多种出行方式细分的人类活动轨迹预测
DOI:
作者:
作者单位:

1.河北省秦皇岛市东北大学秦皇岛分校控制工程学院;2.辽宁省沈阳市东北大学信息科学与工程学院

作者简介:

通讯作者:

中图分类号:

TP18

基金项目:

国家自然科学基金项目(61573077,U1808205),国家自然科学基金项目(面上项目,重点项目,重大项目)


Human Activity Trajectory Prediction Based on Subdivision of Multiple Travel Modes
Author:
Affiliation:

1.School of Control Engineering,Northeastern University at Qinhuangdao,Qinhuangdao;2.College of InformatioScience and Engineering,Northeastern University,Shenyang,China

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    信息社会中,基于用户的历史活动轨迹发掘和预测人类位置轨迹及活动规律至关重要.已有研究大多采用基于时间和轨迹间相似度分类的马尔可夫模型,忽略不同出行方式下的移动规律差异.本文区别不同出行方式,基于轨迹的速度、加速度、航向变化速度等特征,用XGBoost算法识别轨迹对应的出行方式,并采用基于优化的轨迹分割算法,将人类出行轨迹按出行方式分解成多个轨迹,采用经由不同出行方式轨迹建立的马尔可夫模型实现出行轨迹的精准预测.实验表明,不同出行方式的轨迹的移动规律存在显著差异,且本文方法的预测精度和距离偏差明显优于几个基准方法

    Abstract:

    In the information society, it is very important to discover and predict human position trajectories and activity patterns based on users’ historical activity trajectories. Most of the existing studies use the Markov model based on the similarity classification between time and trajectory, ignoring the differences of movement laws under different travel modes. This paper distinguishes different travel modes, based on the characteristics of the trajectory's speed, acceleration, and heading change speed, the XGBoost algorithm is used to identify the travel mode of trajectory, and the optimized trajectory segmentation algorithm is used to decompose the human travel trajectory into travel modes.Markov models trained by trajectories of different travel modes are used to accurately predict travel trajectories. Experiments show that there are significant differences in the trajectory movement laws of different travel modes, and the prediction accuracy and distance deviation of this method are obviously better than several benchmark methods.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-09-06
  • 最后修改日期:2022-01-13
  • 录用日期:2022-01-28
  • 在线发布日期:
  • 出版日期: