基于套索算法和改进正余弦优化支持向量回归的目标威胁估计
DOI:
作者:
作者单位:

空军工程大学

作者简介:

通讯作者:

中图分类号:

E917

基金项目:

国家自然科学基金(62106283),国家自然科学基金(72001214),陕西省自然科学基础研究计划项目(2020JQ-484)资助课题


Target threat estimation based on lasso algorithm and improved sine cosine optimized support vector regression
Author:
Affiliation:

Air Force Engineering Eniversity

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确估计空中目标的威胁值对于防空作战指挥决策具有重要的参考意义。针对空中目标特征繁杂容易造成模型过拟合和正余弦算法容易早熟和陷入局部最优的不足,本文通过套索算法(Least Absolute Shrinkage and Selection Operator,LASSO)去除目标的冗余特征,然后采用佳点集初始化种群、非线性振幅调整因子、随机惯性权重、自适应终点权重以及最优邻域高斯扰动等策略对正余弦算法(Sine Cosine Algorithm,SCA)进行改进,使用改进的正余弦算法对支持向量回归(Support Vector Regression,SVR)模型进行优化,构建了基于套索算法和改进正余弦优化支持向量回归的目标威胁估计模型。对比实验结果显示,改进后的正余弦算法加强了全局搜索能力和局部收敛速度,得到的目标威胁估计模型具有较高的准确度和稳定性,能够为防空作战指挥决策提供科学的参考依据。

    Abstract:

    Accurately estimating the threat value of air targets has important reference significance for air defense combat command decision-making. In view of the complex features of aerial targets that easily cause model over-fitting and the sine-cosine algorithm is prone to premature and fall into local optimality, this paper uses the Least Absolute Shrinkage and Selection Operator (LASSO) to remove the redundant features of the target, and then improves the sine cosine algorithm (SCA) with some strategies such as good point set initialization population, nonlinear amplitude adjustment factor, random inertia weight, adaptive end point weight, and uses the improved Sine Cosine algorithm to optimize the support vector Regression (SVR) model, and a target threat estimation model based on lasso algorithm and improved sine cosine optimized support vector regression is constructed. The comparative experimental results show that the improved sine and cosine algorithm enhances the global search ability and local convergence speed, and the obtained target threat estimation model has high accuracy and stability, which can provide a scientific reference for air defense combat command decision-making.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-11-11
  • 最后修改日期:2022-04-15
  • 录用日期:2022-04-27
  • 在线发布日期:
  • 出版日期: