数据驱动选择策略的多目标差分进化算法
DOI:
作者:
作者单位:

北京工业大学

作者简介:

通讯作者:

中图分类号:

TP273

基金项目:

国家自然科学基金青年项目(61903010); 国家重点研发计划(2018YFC1900800); 北京高校卓越青年科学家项目(BJJWZYJH01201910005020); 国家自然科学基金重大项目课题(61890931); 国家自然科学基金杰出青年基金项目(62125301);国家自然科学基金创新研究群体项目(62021003)


Multi-objective Differential Evolution Algorithm with Data-driven Selection Strategy
Author:
Affiliation:

Beijing University of Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对多目标差分进化算法求解复杂多目标优化问题时,最优解选择策略中非支配排序计算复杂度高的问题,文中提出一种数据驱动选择策略的多目标差分进化(Multi-Objective Differential Evolution with Data-Driven Selection Strategy, MODE-DDSS) 算法。首先,设计了多目标差分进化算法的优化解排序等级评估准则,建立了基于评估准则的优化解排序等级评估库;其次,设计了基于优化解双向搜索机制和无重复比较机制的数据驱动选择策略,实现了优化解的高效搜索和快速排序;最后,构建了数据驱动选择策略的多目标差分进化算法,降低了算法在最优解选择操作中的时间复杂度,提高了算法的寻优效率。实验结果表明,提出的MODE-DDSS算法能够有效减少最优解在选择过程中的比较次数,提升多目标差分进化算法解决复杂多目标优化问题的寻优效率。

    Abstract:

    Multi-objective differential evolution (MODE) algorithm has high computational complexity of selection strategy in solving complex multi-objective optimization problems. To address this issue, a multi-objective differential evolution with data-driven selection strategy (MODE-DDSS) is proposed in this paper. First, the ranking evaluation criteria of optimization solutions is designed, and the ranking evaluation database of optimization solutions based on evaluation criteria is established. Second, a data-driven selection strategy, based on a two-way search mechanism and a non-repeated comparison mechanism, is designed to search and compare the optimal solutions efficiently, and select the optimal solutions. Finally, a multi-objective differential evolution algorithm with data-driven selection strategy is constructed, which reduces the complexity of optimal solution selection operation and improves the optimization efficiency of the algorithm. Experimental results show that the proposed MODE-DDSS algorithm can effectively reduce the number of comparison operations in the selection strategy, and improve the efficiency of the multi-objective differential evolution algorithm in solving complex multi-objective optimization problems.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-11-11
  • 最后修改日期:2022-03-10
  • 录用日期:2022-03-15
  • 在线发布日期:
  • 出版日期: