基于非对称跨模态融合的RGB-D显著目标检测
DOI:
作者:
作者单位:

河北工业大学

作者简介:

通讯作者:

中图分类号:

TP273

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


RGB-D Salient Object Detection with Asymmetric Cross-Modal Fusion
Author:
Affiliation:

Hebei University of Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前大多数 RGB-D 显著目标检测方法在 RGB 特征和 Depth 特征的融合过程中采用对称结构,对两种特征进行相同的操作,忽视了 RGB 图像和 Depth 图像的差异性,易造成错误的检测结果。为解决该问题,本文提出一种基于非对称结构的跨模态融合 RGB-D 显著目标检测方法。利用全局感知模块提取 RGB 图像的全局特征,并设计了深度去噪模块滤除低质量 Depth 图像中的大量噪声;再通过本文提出的非对称融合模块,充分利用两种特征间的差异性,使用 Depth 特征定位显著目标,用于指导 RGB 特征融合,补足显著目标的细节信息,利用两种特征各自的优势形成互补。在 4 个公开的 RGB-D 显著目标检测数据集上进行了大量实验,实验结果验证了本文所提出的方法优于当前的主流方法。

    Abstract:

    Most RGB-D salient object detection methods use a symmetric structure during the fusion process to perform the same operation on the RGB features and Depth features. This fusion method ignores the difference between the RGB image and the Depth image, which is likely to cause false detection results. In order to solve it, this paper proposes a cross-modal fusion RGB-D salient object detection method based on an asymmetric structure. In this paper, a global perception module(GPM) is designed to extract the global features of RGB images, and a deep denoising module(DDM) is designed to filter out a large amount of noise in low-quality depth images.Then through the asymmetric fusion module designed in this paper, we make full use of the difference between the two features differences, use depth feature to locate salient objects, to guide RGB feature fusion, to complement the detailed information of salient objects, and use the respective advantages of the two features to form a complement. A large number of experiments have been carried out on four publicly available RGB-D salient object detection datasets, and the experimental results have verified that the proposed method outperforms the state-of-the-art methods.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-11-29
  • 最后修改日期:2022-04-21
  • 录用日期:2022-04-27
  • 在线发布日期:
  • 出版日期: