基于滚动优化和分散捕食者猎物模型的全覆盖路径规划算法
DOI:
作者:
作者单位:

浙江工业大学

作者简介:

通讯作者:

中图分类号:

TP242

基金项目:

国家重点研发计划项目(2018YFC1309404);浙江省公益技术应用项目研究(LGG18E050023);


Complete coverage path planning algorithm based on rolling optimization and decentralized predator-prey model
Author:
Affiliation:

Zhejiang University of Technology

Fund Project:

the National Key Research and Development Program of China (No. 2018YFB1309404) ;Public Welfare Technology Application Projects of Zhejiang Province (No. LGG18E050023);

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对多机器人执行全覆盖任务效果差的问题,提出了一种基于滚动优化和分散捕食者猎物模型的多机器人全覆盖路径规划算法。利用栅格地图表示作业的环境空间,并基于栅格地图修正捕食者猎物算法中的避开捕食者奖励,添加移动代价奖励和死区回溯机制构建分散捕食者猎物模型;引入滚动优化方法,避免机器人陷入局部最优。预测周期内机器人覆盖栅格的累计奖励值作为适应度函数,并使用鲸鱼优化算法(WOA)求解最优移动序列。最后,在不同环境下进行仿真实验,得到的平均路径长度与生物激励神经网络算法(BINN)和牛耕式A*算法(BA*)相比分别减少了16.69%~17.33%,10.32%~20.03%,验证了本文算法在多机器人全覆盖路径规划中的可行性和有效性。

    Abstract:

    A multi-robot Complete coverage path planning algorithm based on rolling optimization and decentralized predator-prey model is proposed to solve the problem of poor performance of multi-robot performing coverage tasks. The raster map is used to represent the environment space of the job. And based on the raster map, modifying the reward function of avoiding predators in the predator-prey algorithm, adding the moving cost reward function and dead-zone backtracking mechanism to build a decentralized predator-prey model; the rolling optimization method is introduced to avoid the robot falling into local optimum. The cumulative reward value of the robot covered the grid during the prediction period is used as the fitness function, and the optimal movement sequence is solved using the whale optimization algorithm(WOA). Finally, simulation experiments are carried out in different environments. Compared with the biologically inspired neural network algorithm(BINN) and boustrophedon-A* algorithm(BA*), the average path length planned by the proposed method is reduced by 16.69%~17.33% and 10.32%~20.03%, respectively, which verifies The feasibility and effectiveness of the proposed method in multi-robot full coverage path planning.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-12-12
  • 最后修改日期:2022-04-13
  • 录用日期:2022-04-15
  • 在线发布日期:
  • 出版日期: