基于TOPSIS方法改进的多属性决策模型:最小化偏好反转
CSTR:
作者:
作者单位:

(中南大学商学院,长沙430081)

作者简介:

通讯作者:

E-mail: zrwang0209@sina.com.

中图分类号:

C394

基金项目:

国家自然科学基金项目(71631008).


Modified MCDM model based on TOPSIS method: Minimizing preference reversal
Author:
Affiliation:

(Business School,Central South University,Changsha430081,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对多属性决策方法(MCDM)中出现的偏好反转问题,提出一种基于TOPSIS方法改进的MCDM模型.该模型用MAX法代替矢量法对数据进行标准化处理,并根据备选方案的相似距离衡量每个选项的优劣性.这种基于距离计算的综合属性评价方法不仅计算简单,而且可以较好地测度选项间的差异,增强决策结果的准确性.同时,将该模型计算的结果与SAW、AHP、TOPSIS、VIKOR方法进行对比分析,发现只存在原选项时,所提出的模型与SAW、AHP方法的排序结果一致,而当添加或删除某个选项时,SAW、AHP、TOPSIS、VIKOR方法均会产生不同程度的偏好反转现象,而所提出的基于TOPSIS改进的模型可以保持选项的相对顺序不变,表明所提出的模型是有效的,且在避免偏好反转问题时较SAW、AHP、TOPSIS、VIKOR方法具有一定的优越性和可靠性.

    Abstract:

    For preference reversal frequently occurring in the multiple criteria decision making(MCDM), a modified MCDM model based on the TOPSIS method is proposed, in which the vector normalization method is replaced by the MAX method and the similarity distance of alternatives is used to measure the advantages and disadvantages of each option. This method is not only simple to calculate, but also can better measure the differences among alternatives, making the decision result more accurate. Comparing the results of the modified model with those of SAW, AHP, TOPSIS and VIKOR methods, it is found that when there are only original options, the ranking results of the model proposed are consistent with those of SAW, AHP methods. When an option is added or deleted, other methods will produce different degrees of preference reversal, but the modified model can keep the relative rank of alternatives, showing the proposed model is more effective and reliable in avoiding preference reversal compared with SAW, AHP, TOPSIS and VIKOR methods.

    参考文献
    相似文献
    引证文献
引用本文

王宗润,汤小芸.基于TOPSIS方法改进的多属性决策模型:最小化偏好反转[J].控制与决策,2021,36(1):216-225

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-01-06
  • 出版日期: 2021-01-20
文章二维码