Anchor-free的尺度自适应行人检测算法
CSTR:
作者:
作者单位:

(1. 中南大学 自动化学院,长沙 410083;2. 长沙理工大学 电气与信息工程学院,长沙 410004)

作者简介:

通讯作者:

E-mail: tjin@csu.edu.cn.

中图分类号:

TP391.4

基金项目:

国家自然科学基金青年项目(61403427);2020湖南省科技厅青年自然科学基金项目(1541).


Anchor-free scale adaptive pedestrian detection algorithm
Author:
Affiliation:

(1. School of Automation,Central South University,Changsha 410083,China;2. School of Electrical & Information Engineering,Changsha University of Science & Technology,Changsha 410004,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    Anchor作为行人检测算法中的初始框,可以解决行人平移问题和缓解行人尺度变化问题,目前的行人检测算法通常都基于anchor.然而,使用anchor就需要精心调整对检测性能影响非常大的anchor超参数,如anchor的尺度和高宽比等.为避免这一问题,提出一种基于anchor-free损失函数的行人检测算法,并通过融合特征金字塔网络(FPN)所有检测分支的特征,使anchor-free行人检测算法在训练过程中不需要为FPN的每个检测分支设置有效的训练尺度范围.另外,还提出一个尺度注意力(scale attention,SA)模块,用于融合FPN所有检测分支特征的过程,使网络在检测某个尺度的行人时,能够自适应地为行人所对应的不同尺度的感兴趣区域(ROI)特征赋予合适的权重.实验结果显示,所提出的行人检测算法不仅可以实现anchor-free,从而避免anchor的超参数调整问题,而且在性能上优于其他行人检测算法,在CityPersons数据集上取得了目前最好的效果9.19%MR$ {^{-2

    Abstract:

    As the initial box of the pedestrian detection algorithm, anchor can solve the problem of pedestrian translation and alleviate the problem of pedestrian scale variation. At present, the pedestrian detection algorithms are usually based on the anchor. However, the usage of the anchor requires careful adjustment of the hyper-parameters of the anchor, such as the scale and aspect ratio of the anchor, which have a great impact on the detection performance. To circumvent this problem, we present a pedestrian detection algorithm based on an anchor-free loss function. By fusing the features of all detection branches of feature pyramid network(FPN), the algorithm does not need to set an effective training scale range for each detection branch of FPN in the training process. In addition, a SA(scale attention) module is proposed to fuse all the detection branch features of FPN, so that appropriate weights can be adaptively assigned to the region of interest(ROI) features of different scales corresponding to pedestrians when the network detects a certain scale of pedestrian. Experiment results show that the proposed pedestrian detection algorithm not only realizes anchor-free, thus circumvent the super-parameter adjustment problem of the anchor, but also outperforms other pedestrian detection algorithms, achieves 9.19% MR2 which is the best of state-of-the-art results on CityPersons dataset.

    参考文献
    相似文献
    引证文献
引用本文

邹逸群,肖志红,唐夏菲,等. Anchor-free的尺度自适应行人检测算法[J].控制与决策,2021,36(2):295-302

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-01-21
  • 出版日期: 2021-02-20
文章二维码