基于预防维护的单机调度问题
CSTR:
作者:
作者单位:

(1. 上海大学 机电工程与自动化学院,上海 200444;2. 青岛农业大学 理学与信息科学学院,山东 青岛 266109)

作者简介:

通讯作者:

E-mail: susanbwang@shu.edu.cn.

中图分类号:

TP18

基金项目:


Single-machine scheduling problem with preventative maintenance activities
Author:
Affiliation:

(1. School of Mechatronic Engineering and Automation,Shanghai University,Shanghai200444,China;2. Science and Information College,Qingdao Agricultural University,Qingdao266109,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在两种维护约束下,研究完工时间之和最小化的单机调度问题.第1种维护约束是,固定周期预防维护;第2种维护约束是,机器工作期间可连续加工的最大工件个数受限.对于这种带有约束的调度问题,根据问题的规模,采用4种方法进行求解.针对小规模问题,建立一个二值整数规划模型,并根据最优解的特性制定剪枝规则,进而给出分支定界算法.针对中、大规模问题,采用遗传算法进行求解,为缓解遗传算法中常见的早熟问题,对变异算子进行改进,采用动态变异方法,提出动态遗传算法.最后通过仿真实验对各种算法进行性能评估.

    Abstract:

    This paper deals with a single-machine scheduling problem with the objective to minimize the total completion time of jobs subjects to two maintenance constraints. The first maintenance constraint is that the machine will be stopped for maintenance after a periodic interval, and the second one is the constraint on the maximum number of jobs continuously processed. Four methods are used to solve the constrained single-machine scheduling problem. To solve small-scale problems, one binary integer programming model is first proposed, then pruning rules are formulated according to the properties of optimal solutions, and the corresponding branch and bound algorithm is proposed. The genetic algorithm is used to find the near-optimal solutions for medium-scale and large-scale problems. Dynamic genetic algorithm is proposed by adopting the dynamic mutation method to alleviate the precocity problem which is a phenomenon that cannot be ignored in the genetic algorithm. Finally, computational experiments are carried out to evaluate the performance of the proposed algorithms.

    参考文献
    相似文献
    引证文献
引用本文

吴慧,王冰.基于预防维护的单机调度问题[J].控制与决策,2021,36(2):395-402

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-01-21
  • 出版日期: 2021-02-20
文章二维码