无人系统视觉SLAM技术发展现状简析
CSTR:
作者:
作者单位:

(1. 哈尔滨工业大学 航天学院,哈尔滨 150001;2. 中国兵器工业集团有限公司 航空弹药研究院,哈尔滨 150001)

作者简介:

通讯作者:

E-mail: murjun@163.com.

中图分类号:

TP242;TP212

基金项目:


A survey of visual SLAM in unmanned systems
Author:
Affiliation:

(1. School of Astronautics,Harbin Institute of Technology,Harbin150001,China;2. Aviation Ammunition Institute, NORINCO Group,Harbin 150001,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    视觉SLAM(visual SLAM,vSLAM)已成为无人系统在未知环境中实现全自主导航和环境感知不可或缺的重要组成部分.鉴于此,简要介绍vSLAM的发展历程和典型构成,总结两种前端位姿估计方法(特征法与直接法)和两种后端优化方法(非线性滤波与非线性优化)的典型代表及优缺点.在此基础上,依次按照耦合方式和后端优化方法的不同对视觉/惯性SLAM的相关研究成果进行分类.进一步分析代表性开源vSLAM框架的异同,给出公开数据集下的性能对比,并分别从泛化能力、高级感知能力、动态适应性和多传感器集成化等方面对当前vSLAM所面临的挑战进行阐述,探讨vSLAM未来的发展趋势和方向,为研究者提供有益参考.

    Abstract:

    Visual simultaneous localization and mapping(vSLAM) plays a vital role in fully autonomous navigation and perception of unmanned systems in unknown environment. Following a brief introduction to the history and typical structure of vSLAM, a summary about state-of-the-art representatives, advantages and disadvantages of two front-end pose estimation methods(feature based vs. photometric based) and two back-end optimization methods(nonlinear filter vs. nonlinear optimization) is given. On this basis, relevant achievements of visual inertial SLAM(VI-SLAM) are classified into different categories according to their coupled types and back-end optimization methods. Furthermore, the similarities and differences of representative open-source vSLAM frameworks are compared and analyzed, alongside with the comparison of their performance under public datasets. Finally, challenges faced by current vSLAM are elaborated from the aspects of scenario generalization, advanced perception, dynamic adaptability and multi-sensor integration. Future development trends and directions of vSLAM are also discussed to serve as an useful guide for researchers.

    参考文献
    相似文献
    引证文献
引用本文

李云天,穆荣军,单永志.无人系统视觉SLAM技术发展现状简析[J].控制与决策,2021,36(3):513-522

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-03-01
  • 出版日期: 2021-03-20
文章二维码