基于分解的多目标多因子进化算法
CSTR:
作者:
作者单位:

(1. 东北大学信息科学与工程学院,沈阳110004;2. 智能工业数据解析与优化教育部重点实验室,沈阳110004;3. 辽宁省智能工业数据解析与优化工程实验室,沈阳110004)

作者简介:

通讯作者:

E-mail: wangxianpeng@ise.neu.edu.cn.

中图分类号:

TP273

基金项目:

国家重点研发计划项目(2018YFB1700404);国家自然科学基金项目(61573086, 71790614, 71621061);教育部111创新引智基地项目(B16009).


A multiobjective multifactorial evolutionary algorithm based on decomposition
Author:
Affiliation:

(1. College of Information Science and Engineering,Northeastern University,Shenyang110004,China;2. Key Laboratory of Data Analytics and Optimization for Smart Industry,Ministry of Education,Shenyang 110004,China;3. Liaoning Engineering Laboratory of Operations Analytics and Optimization for Smart Industry,Shenyang 110004,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    多目标多因子优化(MO-MFO)问题作为一类新的优化问题近年来受到了众多关注,其特点是需要利用单个种群来同时优化多个多目标优化任务.针对该问题,提出一个基于分解策略的多目标多因子进化算法(MFEA/D).算法通过多组权重向量,将MO-MFO问题中的每个任务分解成一系列单目标优化子问题,并用单个种群同时优化.\;在种群进化过程中提出不同任务之间的信息交流策略,以充分挖掘不同任务之间的有用信息,进而加快每个任务的收敛速度.基于10个多目标多因子标准测试问题的实验结果表明,所提出的不同任务之间的信息交流策略能够加快问题的求解速度,使得MFEA/D算法显著优于当前的MO-MFEA算法.

    Abstract:

    As a new kind of optimization problems, multiobjective multifactorial optimization(MO-MFO) problems have attracted much attention in recent years. Its main feature is that only a single population can be used to optimize multiple multiobjective optimization tasks simultaneously. In this paper, a multifactorial evolutionary algorithm based on decomposition(MFEA/D) strategy is proposed. It decomposes a MO-MFO problem into a series of single objective optimization subproblems through multiple sets of weight vectors, and optimizes them simultaneously with a single population. In the process of population evolution, the information communication strategy between different tasks with a certain probability is proposed to mine useful information between different tasks, so as to accelerate the convergence rate of each task. The statistical analysis of the experiment results on 10 benchmark MO-MFO problems illustrates that the information communication strategy can help to accelerate the convergence rate and that the proposed MFEA/D strategy performs significantly better than the state-of-the-art MO-MFEAs in the literature.

    参考文献
    相似文献
    引证文献
引用本文

么双双,董志明,王显鹏.基于分解的多目标多因子进化算法[J].控制与决策,2021,36(3):637-644

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-03-01
  • 出版日期: 2021-03-20
文章二维码