融合稀疏编码与深度学习的草图特征表示
CSTR:
作者:
作者单位:

(安徽大学计算机科学与技术学院,合肥230601)

作者简介:

通讯作者:

E-mail: zhaopeng_ad@163.com.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(61602004);安徽省高校自然科学研究重点项目(KJ2018A0013,KJ2017A011);安徽省自然科学基金项目(1908085MF188,1908085MF182);安徽省重点研究与开发计划项目(1804d 08020309).


A feature representation of sketch based on fusion of sparse coding and deep learning
Author:
Affiliation:

(College of Computer Science and Technology,Anhui University,Heifei230601,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对小数据集下单纯使用深度学习方法的草图特征提取可分辨性低下的问题,提出一种融合稀疏编码和深度学习的草图特征表示方法.该算法首先对草图进行语义分割;然后迁移深度学习方法,分别提取草图特征和草图部件特征,之后将部件特征降维聚类,获取聚类中心;最后利用部件聚类中心向量初始化稀疏编码中的字典,交替迭代求取获得最终的草图特征.不同于以往的草图特征表示方法,将迁移深度学习获得的草图部件特征引入到稀疏编码中,作为字典的初始基向量,将语义信息融入到稀疏编码,在提升草图特征表示性能的同时,使得稀疏表示具有更好的可解释性.实验结果显示,所提方法下的草图识别率高于采用传统非深度学习和深度学习方法提取的草图特征的草图识别率.

    Abstract:

    In order to overcome that the performance of sketch feature representation and recognition based on purely deep learning is not very well especially in limited sketch dataset, this paper proposes a feature representation of sketch based on the fusion of sparse coding and deep learning (FSCDL). Firstly, this method divides the sketch into components and extracts the features of sketch and sketch components with transfer deep learning. Then, it reduces the feature dimensions of the sketch and sketch components and clusters the sketch components. The cluster centers of sketch components are utilized to initialize the dictionary of sparse coding. Finally, the sketch feature representation is obtained by solving the objective function of sparse coding. Different from the previous work, this paper transfers deep learning to extract the features of sketches and sketch components, which are introduced to the sparse coding. The dictionary is initialized with the features obtained from the above transfer deep learning, which combines the semantic information obtained from deep learning and sparse coding. The proposed method not only improves the performance of the representation of the sketch, but also makes the sparse coding more interpretable. The experimental results show that the sketch recognition accuracy of the prposed method is higher than that of the traditional sketch feature representation methods and the sketch representation methods based on deep learning.

    参考文献
    相似文献
    引证文献
引用本文

赵鹏,高杰超,冯晨成,等.融合稀疏编码与深度学习的草图特征表示[J].控制与决策,2021,36(3):699-704

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-03-01
  • 出版日期: 2021-03-20
文章二维码