基于混合整数规划的智能网联车冲突区时序优化模型
CSTR:
作者:
作者单位:

(1. 西南交通大学交通运输与物流学院,成都611756;2. 西南交通大学综合交通运输大数据应用技术国家工程实验室,成都611756;3. 重庆交通大学重庆市交通运输工程重点实验室,重庆400074)

作者简介:

通讯作者:

E-mail: zhyao@my.swjtu.edu.cn.

中图分类号:

U491.5

基金项目:

国家自然科学基金项目(51578465, 71771190, 71901183);重庆市交通运输工程重点实验室开放基金项目(2018TE01);西南交通大学2019年研究生学术素养提升计划项目(2019KCJS46);湖南省教育厅资助科研项目(16B008).


Mixed integer programming model of scheduling for connected automated vehicles in a conflict zone
Author:
Affiliation:

(1. School of Transportation and Logistics,Southwest Jiaotong University,Chengdu611756,China;2. National Engineering Laboratory of Application Technology of Integrated Transportation Big Data,Southwest Jiaotong University,Chengdu611756,China;3. Chongqing Key Laboratary of Traffic Transportation,Chongqing Jiaotong University,Chongqing400074,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    智能网联车的大规模应用为交通冲突区域的优化与管理提供了新的机遇和挑战.为保证冲突区域车辆的汇入安全,提高冲突区域车流的运行效率,引入优化时间区间的概念,以车辆平均延误为优化目标,车辆通过冲突区域的最小安全时间间隔为约束条件,构建车辆进入冲突区域时序的混合整数线性规划模型.为研究不同流量状态对模型结果的影响,设计不同流量场景的数值仿真实验.结果表明:与不优化时序相比,所提出的模型和算法能够有效地减少车辆的延误和油耗,且最大能够减少54.23%的车辆延误和34.36%的燃油消耗.

    Abstract:

    The large-scale application of connected automated vehicles(CAVs) provides new opportunities and challenges for the optimization and management of traffic conflict zones. In order to ensure the safety of vehicles and improve the operation efficiency of traffic flow in conflict areas, the concept of planning time interval is introduced. Then, with the average vehicle delay as the optimization objective and the minimum safety time interval of vehicles passing through the conflict zone is the constraint, a 0-1 mixed integer linear programming(MILP) model for the scheduling of vehicles entering the conflict zone is proposed. Finally, to study the influence of different traffic volumes on the proposed model, the numerical simulation experiments of different traffic scenarios are designed. The results show that the proposed model and algorithm can effectively reduce vehicle delays and fuel consumption compared with the vehicle schedule without optimization. The maximum reduction is 54.23% of vehicle delays and 34.36% of fuel consumption.

    参考文献
    相似文献
    引证文献
引用本文

姚志洪,蒋阳升,胡蓉,等.基于混合整数规划的智能网联车冲突区时序优化模型[J].控制与决策,2021,36(3):705-710

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-03-01
  • 出版日期: 2021-03-20
文章二维码