基于局部搜索的反向学习竞争粒子群优化算法
CSTR:
作者:
作者单位:

(江南大学物联网工程学院,江苏无锡214122)

作者简介:

通讯作者:

E-mail: fangwei@jiangnan.edu.cn.

中图分类号:

TP18

基金项目:

国家重点研发计划项目(2017YFC1601800,2017YFC1601000);江苏省重点研发计划项目(BE2017630);国家自然科学基金项目(61673194,62073155);江苏省自然科学基金项目(BK20131106);中国博士后科学基金项目(2014M560390);江苏省高校“青蓝工程”项目.


Opposition-based learning competitive particle swarm optimizer with local search
Author:
Affiliation:

(School of IoT Engineering,Jiangnan University,Wuxi214122,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提升粒子群优化算法在复杂优化问题,特别是高维优化问题上的优化性能,提出一种基于Solis & Wets 局部搜索的反向学习竞争粒子群优化算法(solis and wets-opposition based learning competitive particle swarm optimizer with local search,SW-OBLCSO).SW-OBLCSO算法采用竞争学习和反向学习两种学习机制,并设计了基于个体的局部搜索算子.利用10个常用基准测试函数和12个带有偏移旋转的复杂测试函数,在不同维度情况下将SW-OBLCSO算法与多种优化算法进行对比.实验结果表明,所提出算法在收敛速度和全局搜索能力上表现出突出的性能.对模糊认知图(fuzzy cognitive maps)学习问题的测试表明,SW-OBLCSO算法在处理实际问题时同样具有出色的性能.

    Abstract:

    In order to improve the optimization ability of particle swarm optimization(PSO) algorithms in complex optimization problems, especially in high dimensional problems, an opposition-based learning competitive particle swarm optimization algorithm based on Solis & Wets(SW-OBLCSO) local search is proposed. The SW-OBLCSO algorithm adopts two learning mechanisms, namely competitive learning and opposition-based learning. An individual-based local search operator is also introduced. The SW-OBLCSO algorithm is compared with various optimization algorithms on the 10 benchmark functions and 12 complex test functions in different dimensions. The experimental results show that the proposed algorithm exhibits outstanding performance in convergence speed and global search ability. Performance comparison on the fuzzy cognitive map(FCM) learning problems shows that the SW-OBLCSO algorithm also has excellent performance when dealing with practical problems.

    参考文献
    相似文献
    引证文献
引用本文

钱晓宇,方伟.基于局部搜索的反向学习竞争粒子群优化算法[J].控制与决策,2021,36(4):779-789

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-03-15
  • 出版日期: 2021-04-20
文章二维码