基于多块信息提取的AUV资源勘查系统故障检测
CSTR:
作者:
作者单位:

(1. 中国科学院沈阳自动化研究所,沈阳110016;2. 中国科学院机器人与智能制造创新研究院,沈阳110169;3. 中国科学院大学,北京100049;4. 中国科学院网络化控制系统重点实验室,沈阳110016)

作者简介:

通讯作者:

E-mail: zhouxf@sia.cn.

中图分类号:

TP273

基金项目:

国家重点研发计划项目(2017YFC0306800).


Fault detection of AUV resource exploration system based on multi-block information extraction
Author:
Affiliation:

(1. Shenyang Institute of Automation, Chinese Academy of Sciences,Shenyang110016,China;2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences,Shenyang110169,China;3. University of Chinese Academy of Sciences,Beijing100049,China;4. Key Laboratory of Network Control System, Chinese Academy of Sciences,Shenyang110016,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对“潜龙二号”AUV在实际航行过程中,资源勘查系统传感器数据具有多重变量相关性、故障类型多样、受运行状态和环境变化影响数值变化大以及噪声强等问题,提出一种新的基于多块信息提取的主元分析(PCA)故障检测方法.首先,针对变量之间的多重相关性,通过滑窗和相关系数的方法提取变量间相关性信息;然后,根据变化率在不同运行状态和环境下基本稳定的特点,对于不同类型故障,分别提取变化率信息和变化率信息的各阶统计量累积误差信息;最后,基于提取的特征信息建立3个子块,对每个子块分别建立PCA模型并进行检测,将检测的结果通过中值滤波去噪后,用贝叶斯推断进行融合.通过对“潜龙二号”实际运行数据进行检测,验证所提方法的有效性.

    Abstract:

    Aiming at the problems of AUV of Qianlong 2 in the actual navigation process, such as multi-variable correlation, multiple fault types, large numerical variation influenced by operation status and environmental changes, and strong noise, a new principal component analysis (PCA) fault detection method based on block information extraction is proposed. Firstly, according to the multiple correlations among variables, the correlation information between variables is extracted by sliding window and correlation coefficient method. Secondly, according to the basic stable characteristics of change rate in different operating states and environments, for different types of faults, the cumulative error information of each order statistics of change rate information and change rate information is extracted separately. Finally, three sub-blocks are built based on the extracted feature information, and the PCA model is built and tested for each sub-block respectively. After de-noising by median filtering, the detected results are fused by Bayesian inference. The effectiveness of the proposed method is verified by testing the actual operation data of Qianlong 2.

    参考文献
    相似文献
    引证文献
引用本文

郭大权,杨宗圣,周晓锋,等.基于多块信息提取的AUV资源勘查系统故障检测[J].控制与决策,2021,36(4):790-800

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-03-15
  • 出版日期: 2021-04-20
文章二维码