基于自适应混合核典型变量分析的工业过程质量相关故障检测
CSTR:
作者:
作者单位:

(1. 鞍钢集团有限公司,辽宁鞍山114021;2. 鞍钢集团北京研究院有限公司,北京102200)

作者简介:

通讯作者:

E-mail: wu_kunkui\@163.com.

中图分类号:

TP273

基金项目:


Quality-related fault detection for industrial processes based on adaptive mixed kernel canonical variable analysis
Author:
Affiliation:

(1. Ansteel Group Co. Ltd.,Anshan114021,China;2. Beijing Research Institute of Ansteel Co. Ltd.,Beijing102200,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    质量相关故障检测技术是保障工业过程安全顺行和质量稳定的重要手段,是当前流程工业过程控制领域的研究热点.针对工业过程的非线性与动态特性及其质量相关故障的时变特性,提出一种基于自适应混合核典型变量分析(AMKCVA)的质量相关故障检测方法.该方法通过设计合理的混合核函数和自适应监测统计量,提升了工业过程质量相关故障的检测性能.通过对典型的热轧过程现场数据进行仿真验证,并与传统方法对比分析,表明了所提算法的有效性和实用性.

    Abstract:

    Quality-related fault detection technology is an important mean to ensure safe operation and stable quality for industrial processes, which, thus, has recently become hotspots in the process industrial control domain. In this paper, an quality-related fault detection method based on adaptive mixed kernel canonical variable analysis(AMKCVA) is developed, considering the nonlinear and dynamic characteristics of industrial processes, as well as the varying characteristic of quality-related faults. Under that framework, mixed kernel functions and adaptive monitoring statistics are reasonably designed for improving the performance of quality-related fault detection. Finally, a case study on hot rolling process is given to demonstrate the advantages of the proposed approach compared with other methods.

    参考文献
    相似文献
    引证文献
引用本文

姚林,张岩.基于自适应混合核典型变量分析的工业过程质量相关故障检测[J].控制与决策,2021,36(4):801-807

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-03-15
  • 出版日期: 2021-04-20
文章二维码