基于广义主成分分析的重构故障子空间建模方法
CSTR:
作者:
作者单位:

(1. 火箭军工程大学导弹工程学院,西安710025;2. 火箭军工程大学核工程学院,西安710025)

作者简介:

通讯作者:

E-mail: xiangyukong01@163.com.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(61374120,61673387,61903375,61833016).


Reconstructed fault subspace modelling method based on generalized principal component analysis
Author:
Affiliation:

(1. College of Missile Engineering,The Rocket Force University of Engineering,Xián710025,China;2. College of Nuclear Engineering, The Rocket Force University of Engineering,Xián710025,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在线故障诊断是工业过程中十分重要的问题.相比传统贡献图而言,基于重构的故障诊断受到特别关注.传统的主元分析方法没有考虑故障数据中同时包含正常工况信息和故障信息,因而提取出故障子空间对故障的描述准确性不足.为提高故障子空间的准确性,提出一种基于广义主成分分析的重构故障子空间建模方法.首先,同时考虑正常工况数据和故障数据,分析数据关联,提取出两个数据的广义主成分,利用投影关系建立故障子空间模型;然后,构建主成分分析故障监测模型,通过监测重构数据筛选广义主成分和故障方向数量,得到正常运行和故障子空间最优组合.该方法充分利用正常工况和故障工况的数据,所提取的故障子空间能够更加充分地反映故障信息,对后续提高故障诊断的准确性具有重要的作用.最后,通过Matlab数值仿真和TE工业过程验证所提出方法的有效性.

    Abstract:

    Fault diagnosis has been a crucial task for industrial processes. Compared with the traditional contribution plot method, the reconstruction-based fault diagnosis has drawn special attention, especially for its superior performance in the fault data processing. However, the conventional principal component analysis method pays little attention to the fact that the fault data contains both the fault information and the normal operating information. So the fault subspace modelled by the conventional principal component analysis is not accuracy enough. In order to improve the accuracy of the fault subspace, a reconstructed fault subspace modelling method is proposed based on generalized principal component analysis. First, we analyze the correlation between the normal operation data and fault data to obtain the generalized principal components, and model the fault subspace using projection relationship. Then, the principal component analysis monitoring system is constructed, and the optimal combination of normal operating and fault subspaces are obtained by monitoring the reconstruction data to select the appropriate number of generalized principal components and fault directions. The method makes full use of the normal operating data and faulty operating data, thus the extracted fault subspace can reflect more fault information than the previous methods, which plays an important role to help improve the fault diagnosis accuracy. Finally, both Matlab numerical simulation and Tennessee Eastman(TE) industrial process verify the effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

杜柏阳,孔祥玉,冯晓伟.基于广义主成分分析的重构故障子空间建模方法[J].控制与决策,2021,36(4):808-814

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-03-15
  • 出版日期: 2021-04-20
文章二维码