基于DST融合多视图模糊推理赋值的三维目标检测
CSTR:
作者:
作者单位:

(西南交通大学信息科学与技术学院,成都611756)

作者简介:

通讯作者:

E-mail: cfzhang_scce@home.swjtu.edu.cn.

中图分类号:

TP181

基金项目:

国家自然科学基金项目(61503059);四川省科技计划项目(2018GZ0008).


3D object detection based on DST fusion multi-view fuzzy reasoning assignment
Author:
Affiliation:

(School of Information Science and Technology,Southwest Jiaotong University,Chengdu611756,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对前置激光雷达的点云数据,提出一种基于DST融合多视图模糊推理赋值的有效障碍物分割判别方法.将点云数据转换为体素地图并进行路面分割,得到前、俯视图.在两视图中根据不同的模糊推理规则对某体素属于目标的程度进行基本概率赋值,并通过DST融合判别目标,精确分割目标,从而得到方盒模型参数.将三维识别问题转换为一系列的二维检测问题,与直接利用三维点云信息相比,可以降低数据处理复杂度,提高系统稳定性.在自主研发的自动驾驶汽车上采用前置16线激光雷达和TX2嵌入式开发板进行多次在线试验,并在KITTI上进行对比验证,结果表明所提方法在实际应用中拥有较好的实时性和准确性.

    Abstract:

    An effective object segmentation and discrimination method based on DST fusion multi-view fuzzy reasoning assignment is proposed for the point cloud data of pre-lidar. The point cloud data is transformed into a voxel map and road surface segmentation is carried out to obtain the front and top views. In the two views, the basic probability of the voxel's degree of belonging to the object is assigned according to different fuzzy inference rules, and the target is distinguished by DST fusing, and the object is accurately segmented to obtain the parameters of the box model. Converting the 3D recognition problem into a series of 2D detection problems, compared with directly utilizing the 3D point cloud information, can reduce the complexity of data processing and improve the stability of the system. Experiments have been carried out on a self-developed autonomous cars using a 16-line lidar and TX2 embedded development board, with the comparison and verification on KITTI. The results show that the method has good real-time and accuracy in practical application.

    参考文献
    相似文献
    引证文献
引用本文

张翠芳,李成文利,邹应全,等.基于DST融合多视图模糊推理赋值的三维目标检测[J].控制与决策,2021,36(4):867-875

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-03-15
  • 出版日期: 2021-04-20
文章二维码