基于边缘检测的生产线手机膜缺陷识别方法
CSTR:
作者:
作者单位:

(哈尔滨工业大学机电工程学院,哈尔滨150001)

作者简介:

通讯作者:

E-mail: waiwaiyl@hit.edu.cn.

中图分类号:

TP391.4

基金项目:

国家自然科学基金项目(51775132).


Mobile phone protective film defect recognition method based on edge detection
Author:
Affiliation:

(School of Mechanical Engineering,Harbin Institute of Technology,Harbin150001,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前国内手机保护膜的产量和销量巨大,但手机膜生产线上的缺陷检验仍采用目检法,检测效率与准确率较低.针对生产线上手机膜缺陷检测的4个关键问题(正常与缺陷类别不平衡、高信噪比去噪、边缘特征提取以及缺陷样本检测效率)进行研究.采用RST和图像剪切方法实现缺陷样本扩充,解决缺陷样本少,缺陷位置和形式不足问题;提出自适应小波阈值及新的阈值函数,实现传统小波阈值去噪方法的改进,获得优异的去噪效果;在图像边缘检测技术中,引入改进小波阈值去噪方法及Otsu阈值设置方法,提高传统Canny算子的边缘检测性能,实现图像特征有效提取;利用具有旋转、平移及尺度不变性的Zernike矩对边缘检测结果进行特征表达,提高模式识别的效率及准确率.采用支持向量机(SVM)对正常手机膜和缺陷手机膜的边缘Zernike矩特征进行识别,实验结果表明所提方法准确率高、检测速度快,满足生产线上手机膜的缺陷检测要求.

    Abstract:

    The production and sales volume of mobile phone protective film in China is huge, but the defect inspection of mobile phone film production line still adopts the visual inspection method, so that the detection efficiency and accuracy are low. Four key problems in the detection of mobile phone protective film defects on the production line are studied: normal and defect category imbalance, high signal-to-noise ratio denoising, edge extra and defect sample detection efficiency. RST and image cutting methods are used to extend defect samples, which can solve the problems of few defective samples, defect positions and forms. The adaptive wavelet threshold and new threshold function are proposed to improve the traditional wavelet threshold denoising method and obtain excellent denoising effect. In the image edge detection technology, the improved wavelet threshold denoising method and the Otsu threshold setting method are introduced to improve the edge detection performance of traditional Canny operators and realize the effective extraction of image features. The Zernike moment with rotation, translation and scale invariance is used to express the features of the edge detection results to improve the efficiency and accuracy of pattern recognition. Finally, the suport vector machine(SVM) is used to identify the Zernike moment features of the edges of normal and defective mobile phone membranes. The experimental result shows that the method has high accuracy and fast detection speed, and meets the defect detection requirements of mobile phone film on the production line.

    参考文献
    相似文献
    引证文献
引用本文

林琳,吕彦诚,郭昊,等.基于边缘检测的生产线手机膜缺陷识别方法[J].控制与决策,2021,36(4):1017-1024

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-03-15
  • 出版日期: 2021-04-20
文章二维码