基于图卷积网络的行为识别方法综述
CSTR:
作者:
作者单位:

青岛科技大学 信息科学技术学院,山东 青岛 266061

作者简介:

通讯作者:

E-mail: lyun-1027@163.com.

中图分类号:

TP391

基金项目:

国家自然科学基金项目(61702295,61672305).


A survey of action recognition methods based on graph convolutional network
Author:
Affiliation:

College of Information Science and Technology,Qingdao University of Science and Technology,Qingdao 266061,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    行为识别技术具有巨大的应用前景和潜在的经济价值,广泛应用于视频监控、视频检索、人机交互、公共安全等领域.图卷积网络表现出基于图数据的依赖关系进行建模的强大功能,成为行为识别领域的研究热点.基于此,主要概述基于图卷积网络的行为识别方法.图卷积网络主要有两大方法:基于频谱的方法和基于空间的方法.首先,从不同侧面分析两种方法的优缺点,概述两种方法在行为识别领域的应用与发展;然后,根据行为识别中图网络模型和算法设计的差异,总结网络构造的关键方面,对比不同算法对模型性能产生的影响;最后,针对图卷积网络在行为识别中存在的问题,对未来图卷积网络的发展进行展望.

    Abstract:

    Action recognition technology has great application prospects and potential economic value, and is widely used in video surveillance, video retrieval, human-computer interaction, public security and other fields. Graph convolutional networks show the powerful function of modeling based on graph data dependency, which have become a research hotspot in the field of action recognition. This paper mainly summarizes action recognition methods based on graph convolutional networks. There are two main methods of graph convolutional networks: the spectral-based method and the spacial-based method. Firstly, for the two methods, this paper analyzes advantages and disadvantages from different aspects, summarizes their application and development in the field of action recognition. Then, according to the differences of the design of graph network models and algorithms in action recognition, key aspects of network construction are summarized, and the influence of different algorithms on model performance is compared. Finally, according to the problems existing in the action recognition based on graph convolutional networks, future development of graph convolutional networks is prospected.

    参考文献
    相似文献
    引证文献
引用本文

孔玮,刘云,李辉,等.基于图卷积网络的行为识别方法综述[J].控制与决策,2021,36(7):1537-1546

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-06-16
  • 出版日期: 2021-07-20
文章二维码