基于参数自适应蚁群算法的高速列车行车调度优化
CSTR:
作者:
作者单位:

1. 东北大学 流程工业综合自动化国家重点实验室,沈阳 110004; $ $;2. 中国沈阳铁路局集团有限公司,沈阳 110000

作者简介:

通讯作者:

E-mail: daixuewu@mail.neu.edu.cn.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(61790574,U1834211,61773111);中央高校基本科研业务费专项资金项目 (N2008001);辽宁省自然科学基金项目(2020-MS-093);国家铁路集团科技研究开发计划项目(N2019 G020);兴辽英才计划项目(XLYC1808001).


Optimization of high-speed train operation scheduling based on parameter adaptive improved ant colony algorithm
Author:
Affiliation:

1. State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang 110004,China;2. China Railway Shenyang Group Co. Ltd.,Shenyang 110000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着我国高铁建设成网,列车运行环境更加复杂多变,对日常行车调度的精细化提出了更高要求.对此,重点研究在大风、雨、雪等恶劣天气及设备设施故障等突发事件下造成列车运行晚点时,在不改变列车运行路径的前提下,如何通过调整高速列车行车顺序和到发时间,智能高效地恢复列车按图运行.将含有到发间隔、越行等多约束的列车运行时间调整问题建模成三维空间上的最佳路径搜索问题,提出一种改进蚁群算法来实现高速列车行车调度优化,并提出一个面向高铁调度的信息启发式因子和期望启发式因子的权重组合以及挥发因子的动态调整方法,用以提高收敛速度和维持解质量.仿真结果表明,所提出的“时间$=$空间”转换模型和权重自适应调整方法能有效提高蚁群搜索求解高铁调度问题的性能,实现高速列车行车调度优化.

    Abstract:

    With the construction of high-speed railway network in China, the train operation environment is more complex and changeable, which puts forward higher requirements for the daily traffic dispatching. Focusing on delays caused by sudden events such as strong wind, rain, snow and equipment failure, this paper investigates how the train running can be intelligently and efficiently restored according to the operation diagram by adjusting train running orders and arrival/departure time, yet without changing the train running path. This paper innovatively models the problem of train travel time adjustment with multiple constraints, such as arrival and departure interval and overtaking, as an optimal path search problem on the three-dimensional, an improved ant colony algorithm is proposed to realize the optimization of high-speed train dispatching, and a dynamic adjustment method of information heuristic factors and expectation heuristic factors for high-speed train dispatching is proposed, in order to improve the convergence speed and maintain the solution quality. The simulation results show that the “time$ = $space” conversion model and the weight adaptive adjustment method proposed in this paper can effectively improve the performance of ant colony search to solve the high-speed train scheduling problem, and can realize the optimization of high-speed train operation scheduling.

    参考文献
    相似文献
    引证文献
引用本文

刘辉,代学武,崔东亮,等.基于参数自适应蚁群算法的高速列车行车调度优化[J].控制与决策,2021,36(7):1581-1591

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-06-16
  • 出版日期: 2021-07-20
文章二维码