基于MI-SVR模型的航空旅客出行指数预测方法研究
CSTR:
作者:
作者单位:

1. 上海理工大学 管理学院,上海 200093;2. 同济大学附属东方医院 运营管理部,上海 200120

作者简介:

通讯作者:

E-mail: fan.chongjun@163.com.

中图分类号:

TP181

基金项目:

国家自然科学基金项目(71774111);上海市教育委员会科研创新重点基金项目(14ZZ131).


Air passenger index prediction method based on MI-SVR mode
Author:
Affiliation:

1. Business School,University of Shanghai for Science and Technology,Shanghai 200093,China;2. Operation Management Department, East Hospital Affiliated to Tongji University,Shanghai 200120,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    航空旅客出行的情况对民用航空机场建设与运营具有重大意义.针对航空旅客出行情况的预测研究,首先定义一种航空旅客出行指数,通过K-means聚类方法对航空旅客出行指数进行分级;然后基于互信息与相关性原理,选取航空旅客出行情况关键影响特征因子,提出一种基于关键影响因子与航空旅客出行指数互信息的MI-SVR(mutual information-support vector regression)机器学习预测模型;最后通过上海机场旅客出行指数预测实验对模型进行验证,实验结果显示MI-SVR模型具有可行性与有效性,同时,相比传统的预测模型预测效果更优.此外,实验结果也表明,相对仅基于历史数据进行独立预测,各模型基于互信息引入影响因子进行预测误差更小,研究结果有助于提升机场建设及运营管理水平,同时也可辅助人们选择通过民航交通方式出行的时段.

    Abstract:

    Air passenger travel is of great significance to the construction and operation of civil aviation airports. This paper studies the prediction of air passenger index, the main research work is as follows: Firstly, the air passenger index is defined, and the air passenger index is classified using the K-means clustering method. Then, based on the principle of mutual information and correlation, the key influencing factors of air passenger index are selected. This work presents a mutual information-support vector regression(MI-SVR) machine learning model based on mutual information between the key influencing factors and the air passenger index, which is used to predict the air passenger index. Finally, the model is validated by passengers throughput data of the Shanghai airport. The experimental results show that the MI-SVR model is feasible and effective, and compared with classical models, the IM-SVR model has better prediction effect. In addition, it is also showed that the prediction effect of each model is better after introducing influence factors based on mutual information. Overall, the study is helpful to the construction and operation of airports, and it can also help people choose the time to travel by air.

    参考文献
    相似文献
    引证文献
引用本文

熊红林,朱人杰,冀和,等.基于MI-SVR模型的航空旅客出行指数预测方法研究[J].控制与决策,2021,36(7):1619-1626

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-06-16
  • 出版日期: 2021-07-20
文章二维码