基于深度时序特征迁移的轴承剩余寿命预测方法
CSTR:
作者:
作者单位:

1. 河南师范大学 计算机与信息工程学院,河南 新乡 453007;2. 智慧商务与物联网技术 河南省工程实验室,河南 新乡 453007

作者简介:

通讯作者:

E-mail: maowt@htu.edu.cn.

中图分类号:

TH17

基金项目:

国家重点研发计划专项项目(2018YFB1701400);国家自然科学基金项目(U1704158);河南省科技攻关项目(212102210103);河南师范大学面上项目培育项目(2020PL09).


Remaining useful life prediction of bearing based on deep temporal feature transfer
Author:
Affiliation:

1. School of Computer and Information Engineering,Henan Normal University,Xinxiang 453007,China;2. Henan Engineering Laboratory of Smart Business and Internet of Things Technology,Xinxiang 453007,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    不同工况下轴承退化数据分布不一致导致深度学习等方法对剩余寿命预测效果有限,而已有迁移学习预测方法未能充分挖掘不同工况退化序列的内在趋势性,为此,提出一种基于深度时序特征迁移的轴承剩余寿命预测方法.首先,提出一种深度时序特征融合的健康指标构建模型,利用时间卷积网络挖掘退化趋势的内在时序特征,得到源域多轴承的健康指标;然后,提出一种最小化序列相似度的领域自适应算法,利用源域健康指标作为退化趋势元信息,选取目标域与源域之间的公共敏感特征;最后,采用支持向量机构建预测模型.在IEEE PHM Challenge 2012 轴承全寿命数据集上进行实验,结果表明,所提出方法构建的健康指标可更有效地反映退化趋势,同时明显提升剩余寿命预测的准确度.

    Abstract:

    Due to the inconsistent distribution of bearing degradation data under different working conditions, the prediction performance of remaining useful life by using deep learning and other techniques is limited. Moreover, most of existing transfer learning-based prediction methods fail to fully exploit the inherent degradation trend under different working conditions. To solve these problems, a prediction method of bearing remaining useful life is proposed based on deep temporal feature transfer. Firstly, a health indicator(HI) construction model based on deep temporal features is proposed. The model uses the temporal convolutional network(TCN) to exploit inherent temporal features from the degradation trend of multiple bearings, and builds the HI sequence of the bearings in source domain. Then, a domain adaptation algorithm for minimizing sequence similarity is proposed. The HI sequence of source domain is used as meta-information of degradation trend for selecting common representative features between target domain and source domain. Finally, the support vector machine is used to construct the prediction model. Experiments are performed on the IEEE PHM Challenge 2012 bearing whole-life dataset, and the results show the proposed HI can effectively reflect the degradation trend, and significantly improve the prediction accuracy of remaining life.

    参考文献
    相似文献
    引证文献
引用本文

陈佳鲜,毛文涛,刘京,等.基于深度时序特征迁移的轴承剩余寿命预测方法[J].控制与决策,2021,36(7):1699-1706

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-06-16
  • 出版日期: 2021-07-20
文章二维码