基于多层级特征的机械臂单阶段抓取位姿检测
CSTR:
作者:
作者单位:

1. 东北大学 信息科学与工程学院,沈阳 110004;2. 东北大学 机器人科学与工程学院,沈阳 110169

作者简介:

通讯作者:

E-mail: zhangyunzhou@ise.neu.edu.cn.

中图分类号:

TP242

基金项目:

中央高校基本科研业务费专项资金项目(N172608005, N182608004, N2004022);装备可靠性重点实验室基金项目(61420030302);辽宁省高校创新人才支持计划项目(LR2019027).


Single-stage grasp pose detection of manipulator based on multi-level features
Author:
Affiliation:

1. College of Information Science and Engineering,Northeastern University,Shenyang 110004, China;2. Faculty of Robot Science and Engineering,Northeastern University,Shenyang 110169, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对机械臂对尺寸变换、形状各异、任意位姿的未知物体抓取,提出一种基于多层级特征的单阶段抓取位姿检测算法,将物体抓取位姿检测问题视为抓取角度分类和抓取位置回归进行处理,对抓取角度和抓取位置执行单次预测.首先,利用深度数据替换RGB图像的B通道,生成RGD图像,采用轻量型特征提取器VGG16作为主干网络;其次,针对VGG16特征提取能力较弱的问题,利用Inception模块设计一种特征提取能力更强的网络模型;再次,在不同层级的特征图上,利用先验框的方法进行抓取位置采样,通过浅层特征与深层特征的混合使用提高模型对尺寸多变的物体的适应能力;最后,输出置信度最高的检测结果作为最优抓取位姿.在image-wise数据集和object-wise数据集上,所提出算法的评估结果分别为$95.71$%和$94.01$%,检测速度为58.8FPS,与现有方法相比,在精度和速度上均有明显的提升.

    Abstract:

    For a manipulator to grasp the novel objects with variable sizes, different shapes, and arbitrary poses, a single-stage grasp pose detection algorithm based on multi-level features is designed by taking the grasp position detection problem of objects as the grasp angle classification and grasp position regression processing, and performing a single prediction for grasp angle and grasp position. The RGD image is generated by replacing the blue channel of RGB image with depth data, and the lightweight feature extractor VGG16 is used as the backbone network. For the problem that the feature extraction ability of VGG16 is weak, the Inception module is used to design a network model with stronger feature extraction capability. Then, grasp position is sampled using the method of priori box on the feature map of different levels, and the adaptability of the model to the objects with variable sizes is improved through the combination of shallow features and deep features. Finally, the detection result with the highest confidence is output as the optimal grasp pose. The evaluation results of the proposed algorithm on the image-wise dataset and the object-wise dataset are respectively 95.71% and 94.01%, and the detection speed is 58.8FPS, and the accuracy and speed are improved compared with the current methods.

    参考文献
    相似文献
    引证文献
引用本文

张云洲,李奇,曹赫,等.基于多层级特征的机械臂单阶段抓取位姿检测[J].控制与决策,2021,36(8):1815-1824

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-07-13
  • 出版日期: 2021-08-20
文章二维码