基于改进GNG算法的燃煤锅炉数据动态特征分析与控制
CSTR:
作者:
作者单位:

1. 贵州大学 现代制造技术教育部重点实验室,贵阳 550025;2. 贵州大学 公共大数据国家重点实验室,\hspace{11pt}贵阳 550025;3. 贵州大学 机械工程学院,贵阳 550025

作者简介:

通讯作者:

E-mail: clsnnqns@163.com.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(51505094,61962009);贵州省科学技术基金计划项目[(2016)1037];贵州省科技支撑计划项目[(2017)2029];贵州大学引进人才科研项目[贵大人基合字(2014)60号].


Dynamic characteristics analysisand control of coal-fired boiler based on improved GNG algorithm
Author:
Affiliation:

1. Key Laboratory of Advanced Manufacturing Technology of Ministry of Education,Guizhou University,Guiyang 550025, China;2. Sate Key Laboratory of Public Big Data,Guizhou University,Guiyang 550025,China;3. College of Mechanical Engineering,Guizhou University,Guiyang 550025,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    数据动态特征分析与控制技术是一种重要的数据挖掘手段,燃煤锅炉数据具有明显时序性和漂移性等特点,针对目前数据跟踪与监督算法大多缺乏动态性、实时性和稳定性等问题,设计一种基于改进生长神经气模型(GNG)的自适应聚类模型,建立基于概率、范围搜寻、节点平均距离的节点生成、删除机制,实现对漂移数据实时监控.最后以燃煤锅炉动态数据为分析对象进行实验,实验结果表明该模型和算法对动态漂移数据的实时跟踪能力更强,能对燃煤锅炉动态数据进行准确、有效的监督和控制.

    Abstract:

    Data dynamic feature analysis and control technology are considered as important data mining methods. The coal-fired boiler data have obvious characteristics such as timing and drift. In view of the current lack of dynamic, real-time problems of data tracking monitoring algorithms, we propose an adaptive clustering model based on improved growing neural gas(GNG). The improved GNG is used to realize real time monitoring for drift data. The node generation and deletion mechanism are established. based on probability, range search and node average distance. Finally, the dynamic data for coal-fired boilers are taken as the analysis object. The experimental results show that the model and algorithm have stronger real-time tracking ability for dynamic drift data, and can effectively supervise and control the dynamic data of coal-fired boilers.

    参考文献
    相似文献
    引证文献
引用本文

吴永明,陈琳升,李少波.基于改进GNG算法的燃煤锅炉数据动态特征分析与控制[J].控制与决策,2021,36(8):1855-1861

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-07-13
  • 出版日期: 2021-08-20
文章二维码