基于反向学习的群居蜘蛛优化WSN节点定位算法
CSTR:
作者:
作者单位:

1. 南华大学 资源环境与安全工程学院,湖南 衡阳 421001;2. 湖南省铀尾矿库退役治理技术工程技术研究中心,湖南 衡阳 421001

作者简介:

通讯作者:

E-mail: yxw2008xy@163.com.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(11875164);湖南省重点研发计划项目(2018SK2055);国家应急管理部安全生产重特大事故防治关键技术科技项目(hunan-0001-2018AQ);湖南省研究生科研创新项目(CX20190721).


WSN node localization based on social spider optimization and opposition based learning
Author:
Affiliation:

1. School of Resource & Environment and Safety Engineering,University of South China,Hengyang 421001,China;2. Hunan Engineering Research Center for Uranium Tailings Decommission and Treatment,Hengyang 421001,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对启发优化算法在WSN节点定位问题中定位精度不高和收敛速度较慢的缺陷,提出基于反向学习的群居蜘蛛优化WSN节点定位算法.为减少前期随机搜索,所提出算法首先通过Bounding-box方法得到未知节点可能存在的区域,在该区域初始化启发个体,并将加权中心反向学习策略与群居蜘蛛群优化算法相结合,求解未知节点估计位置,提高算法全局搜索能力.仿真结果表明,相比于传统算法,所提出算法收敛速度更快,节点定位精度更高.

    Abstract:

    To improve the weakness of low localization accuracy and slow rate of convergence in the heuristic-based node localization algorithm, WSN node localization based on social spider optimization and opposition based learning is proposed. For reducing random search in the previous stage, a strategy of Bounding-box is firstly performed by determining a square area where the heuristic individual will be initialized. Then weighted center opposition based learning is introduced to original social spider optimization to find the best-estimated location of nodes and improve the global searching ability. Simulation results show that compared with the traditional algorithm, the proposed algorithm has faster convergence speed and higher node localization accuracy.

    参考文献
    相似文献
    引证文献
引用本文

余修武,张可,刘永,等.基于反向学习的群居蜘蛛优化WSN节点定位算法[J].控制与决策,2021,36(10):2459-2466

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-08-18
  • 出版日期: 2021-10-20
文章二维码