基于深度学习的四旋翼无人机地面效应补偿降落控制设计
CSTR:
作者:
作者单位:

天津大学 电气自动化与信息工程学院,天津 300072

作者简介:

通讯作者:

E-mail: xbin@tju.edu.cn.

中图分类号:

TP273

基金项目:

国家重点研发计划项目(2018YFB1403900);国家自然科学基金项目(91748121,90916004).


Robust landing controller design for quadrotor unmanned aerial vehicle ground effects compensation via deep learning
Author:
Affiliation:

School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对四旋翼无人机在降落控制过程中地面效应对控制性能有较大影响的问题,在地面效应复杂,难以建立机理模型的约束下,提出一种基于深度学习的新型非线性鲁棒控制策略.利用深度神经网络的学习能力,建立无人机降落过程中未知地面效应的补偿模型;结合super-twisting控制设计,实现对降落过程中未知地面效应的快速抑制和无人机降落的精确控制;通过Lyapunov分析法和谱归一化法,证明降落过程中闭环系统的稳定性和无人机位置误差的有限时间收敛特性.实时飞行实验结果表明,所提出的控制策略具有较好的控制效果.

    Abstract:

    This paper proposes a control strategy based on deep learning for a quadrotor to suppress the unknown ground effects during the landing procedure. Due to the complexity of the grounds effects, it is very difficult to obtain the accurate dynamic model. To solve this issue, we set up a compensation model for the ground effects in the landing procedure by using the learning ability of the deep neural network (DNN). Then the super--twisting method is combined with the DNN to formulate a nonlinear robust adaptive landing control strategy which is able to suppress the ground effects and drive the quadrotor to its desired landing point accurately. The Lyapunov based stability analysis and the spectral normalization are employed to prove the stability of the closed loop system, and finite--time convergence of landing error is also achieved. Real-time flight experimental results are included to show the good landing control performance of the proposed control strategy.

    参考文献
    相似文献
    引证文献
引用本文

鲜斌,耿向威.基于深度学习的四旋翼无人机地面效应补偿降落控制设计[J].控制与决策,2021,36(11):2637-2646

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-09-26
  • 出版日期: 2021-11-20
文章二维码