非局部低秩正则化视频压缩感知重构
CSTR:
作者:
作者单位:

1. 上海大学 通信与信息工程学院,上海 200444;2. 上海大学 特种光纤与光接入网重点实验室,上海 200072

作者简介:

通讯作者:

E-mail: adaline@163.com.

中图分类号:

TN911.73

基金项目:

国家自然科学基金项目(61871261);上海市科委重点项目(19DZ1205802).


Compressive video sensing reconstruction via nonlocal low-rank regularization
Author:
Affiliation:

1. School of Communication and Information Engineering,Shanghai University,Shanghai 200444,China;2. Key Laboratory of Specialty Fiber Optics and Optical Access Networks,Shanghai University,Shanghai 200072,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    视频压缩感知在采样资源受限的视频采集领域具有重要研究意义,重构算法是视频压缩感知系统的关键技术.为了更好地从压缩采样数据中重构视频信号,提出一种基于全变分与非局部低秩正则化的视频重构算法,为视频重构提供一种新的思路.算法第1步考虑视频帧内和帧间的局部相关性,应用全变分模型作为先验约束得到初步恢复的视频帧;第2步考虑视频帧内与帧间的非局部自相似性,应用改进的非局部低秩正则化算法对其进一步重构,该步骤针对初步恢复的图像帧分块在本帧和关键帧中寻找相似块,构建低秩矩阵进行低秩正则化重构.仿真结果表明,所提出算法能够精确重构视频信号,相比主流的视频压缩感知重构算法具有更高的重构质量.

    Abstract:

    Compressive video sensing(CVS) has great research significance in the video acquisition system with limited sampling resources. This paper proposes a reconstruction algorithm based on total variation(TV) and nonlocal low-rank regularization(NLR-CS) to better reconstruct video signal from compressive sampled data. For this algorithm, the first step considers the local correlation within and between video frames, and applies TV as the prior constraint to obtain the initial recovered frame. In the second step, the improved NLR-CS algorithm is utilized to further reconstruct video frame considering the nonlocal self-similarity (NLSS). This step first blocks the initial recovered frame, finds similar blocks in the current frame and the key frames to construct low-rank matrix, then a low-ranking regularization reconstruction is performed. Experimental results show that the proposed algorithm can reconstruct video signals well, obtains higher video reconstruction accuracy than other CVS reconstruction algorithms.

    参考文献
    相似文献
    引证文献
引用本文

田金鹏,杨洁,刘通,等.非局部低秩正则化视频压缩感知重构[J].控制与决策,2021,36(11):2743-2750

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-09-26
  • 出版日期: 2021-11-20
文章二维码