基于径向基神经网络的新型齿轮故障诊断方法
CSTR:
作者:
作者单位:

哈尔滨理工大学 自动化学院,哈尔滨 150080

作者简介:

通讯作者:

E-mail: xueping@hrbust.edu.cn.

中图分类号:

TP18

基金项目:

先进制造智能化技术教育部重点实验室项目;黑龙江省应用技术研究与开发计划项目(GC13A412);哈尔滨市科技创新人才项目(2016RQXXJ055).


Novel gear fault diagnosis method based on RBF neural network
Author:
Affiliation:

School of Automation,Harbin University of Science and Technology,Harbin 150080,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    非平稳工况下的齿轮故障检测是一项非常困难的工作,由于齿轮振动信号的复杂性,导致故障特征提取和故障诊断困难.针对这些问题,基于径向基(radial basis function,RBF)神经网络,提出一种在变速条件下齿轮的故障诊断方法CIHDRFD.首先利用自适应白噪声的完整集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN),将原始振动信号分解为多个固有的模态函数(intrinsic mode function,IMF),并通过计算其信息熵(information entropy,IE)筛选出IE最小的4个IMF作为特征IMF;然后利用希尔伯特变换(hilbert transform,HT)处理特征IMF并求出Hilbert包络谱,利用Hilbert包络谱构建故障特征向量;最后利用改进的双RBF神经网络进行故障检测.通过搭建齿轮故障检测平台验证CIHDRFD方法的有效性,实验结果表明,CIHDRFD方法适用于齿轮故障诊断,在速度波动为3%的情况下,诊断准确率和诊断时间分别为98.21%和74.53s.

    Abstract:

    It is a very difficult work to detect gear fault under non-stationary condition. Due to the complexity of gear vibration signals, it is difficult to extract fault features and diagnose faults. In order to solve these problems, based on radial basis function (RBF) neural network, this paper proposes a gear fault diagnosis method, which is CIHDRFD. In the CIHDRFD method, complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is used firstly to decompose the original vibration signal into multiple inherent modal functions (IMFs), and by calculating its information entropy (IE), the 4 IMFs with the smallest IE are selected as the characteristic IMF. Then, the Hilbert transform (HT) is used to process the feature IMF and the Hilbert envelope spectrum is obtained. The Hilbert envelope spectrum is used to construct the fault feature vector. Finally, the improved double RBF neural network is used for fault diagnosis. The effectiveness of the CIHDRFD method is verified by building a gear failure detection platform. Experimental results show that the CIHDRFD method is suitable for gear fault diagnosis. When the speed fluctuation is 3%, the diagnostic accuracy and diagnosis time of the CIHDRFD method are 98.21% and 74.53s, respectively.

    参考文献
    相似文献
    引证文献
引用本文

薛萍,郝鹏,王宏民.基于径向基神经网络的新型齿轮故障诊断方法[J].控制与决策,2022,37(2):409-416

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-01-07
  • 出版日期: 2022-02-20
文章二维码