基于注意力LSTM的多阶段发酵过程集成质量预测
CSTR:
作者:
作者单位:

1. 北京工业大学 信息学部,北京 100124;2. 北京工业大学 数字社区教育部工程研究中心, 北京 100124;3. 北京工业大学 城市轨道交通北京实验室,北京 100124;4. 北京工业大学 计算智能与智能系统北京市重点实验室,北京 100124

作者简介:

通讯作者:

E-mail: gaoxuejin@bjut.edu.cn.

中图分类号:

TP277

基金项目:

国家自然科学基金项目(61803005,61640312,61763037);北京市自然科学基金项目(4192011,4172007);山东省重点研发计划项目(2018CXGC0608).


Integrated quality prediction of multi-stage fermentation process based on attention LSTM
Author:
Affiliation:

1. Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China;2. Engineering Research Center of Digital Community of Ministry of Education,Beijing University of Technology,Beijing 100124,China;3. Beijing Laboratory for Urban Mass Transit,Beijing University of Technology,Beijing 100124,China;4. Beijing Key Laboratory of Computational Intelligence and Intelligent System,Beijing University of Technology,Beijing 100124,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    考虑到发酵过程的动态特征对阶段划分的影响,为提高模型预测精度,提出一种基于注意力LSTM的多阶段发酵过程质量预测方法.首先,将原始三维数据沿批次展开,对每个时间片矩阵进行偏最小二乘(PLS)分析得到表征过程变量的得分矩阵和表征质量变量的得分矩阵,采用仿射传播(AP)聚类算法将联合得分矩阵进行聚类,实现第1步划分;然后,采用encoder-decoder模型将表征过程动态性的动态特征提取出来,采用AP算法对其进行第2步划分;最后,综合分析两步划分结果,将生产过程划分为不同的稳定阶段和过渡阶段,对划分后的各个阶段分别建立注意力长短期记忆(LSTM)集成质量预测模型.将该方法应用到青霉素发酵仿真数据和大肠杆菌实际生产数据进行验证,结果表明了所提出方法的可行性和有效性.

    Abstract:

    In order to consider the impact of dynamic features of the fermentation process on stage division and improve the prediction accuracy, a quality prediction method based on attention long short-term memory(LSTM) is proposed. Firstly, the original 3D data are unfolded along the batch direction. Partial least square(PLS) analysis is performed on each time slice matrix to obtain the score matrix of process variables and quality variables. The joint score matrices are clustered using the affinity propagation(AP) algorithm. Then the encoder-decoder model is used to extract the dynamic characteristics of the process dynamics, and the AP algorithm is used for the second division. Finally, the production process is divided into different stable phases and transition phases through the comprehensive analysis of the two-step division results. The LSTM integrated quality prediction model is established in each stage after the division. Penicillin fermentation simulation data and E. coli production data are tested, and the results demonstrate the feasibility and effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

高学金,孟令军,高慧慧.基于注意力LSTM的多阶段发酵过程集成质量预测[J].控制与决策,2022,37(3):616-624

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-01-25
  • 出版日期: 2022-03-20
文章二维码