基于收缩约束模型预测控制的无人车辆路径跟踪
CSTR:
作者:
作者单位:

1. 兰州理工大学 电气工程与信息工程学院,兰州 730050;2. 兰州理工大学 甘肃省工业过程先进控制重点实验室,兰州 730050;3. 兰州理工大学 电气与控制工程国家级实验教学示范中心,兰州 730050;4. 曲阜师范大学 工学院,山东 日照 276826

作者简介:

通讯作者:

E-mail: sht371322@163.com.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(61863026, 61751315);甘肃省高等学校产业支撑引导项目(2019C-05);甘肃省工业过程先进控制实验室开放基金项目(2019KFJJ03).


Unmanned vehicle path tracking based on contraction constraint model predictive control
Author:
Affiliation:

1. College of Electrical and Information Engineering,Lanzhou University of Technology,Lanzhou 730050,China;2. Key Laboratory of Gansu Advanced Control for Industrial Processes,Lanzhou University of Technology,Lanzhou 730050,China;3. National Demonstration Center for Experimental Electrical and Control Engineering Education,Lanzhou University of Technology,Lanzhou 730050,China;4. College of Engineering, Qufu Normal University,Rizhao 276826,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对存在有界扰动的非线性无人驾驶车辆避障过程中最优路径规划跟踪问题,提出一种基于预测时域内系统输入输出收缩约束(PIOCC)的模型预测控制(MPC)方法.首先在构建目标函数时,为扩大可行性解的范围引入软约束思想,将最优规划路径的跟随问题转化为对模型预测控制优化问题的求解;其次为避免短预测时域造成闭环系统发散而导致在约束条件限定下出现无可行性解的情况,采用预测时域内系统输入输出收缩约束的方法,设计模型预测控制器;再次基于Lyapunov稳定性理论证明所设计的模型预测闭环控制系统是渐近稳定的;最后通过仿真实例验证了所提出基于PIOCC的控制策略在解决扩大可行解范围和避免闭环系统发散问题时的有效性,实现了无人驾驶车辆在路径跟踪时具有良好的快速性和稳定性.

    Abstract:

    This paper investigates optimal path planning and tracking in the obstacle avoidance process of nonlinear unmanned vehicles with bounded disturbances, a model predictive control(MPC) method based on the predictive input and output contraction constraints(PIOCC) of the system is proposed. Firstly, when constructing the objective function, the idea of soft constraints is introduced to expand the range of feasible solutions, and the problem of following the optimal planning path is transformed into the solution of the model predictive control optimization problem. Secondly, in order to avoid the divergence of the closed-loop system caused by the short prediction time domain, which will lead to infeasible solutions under the constraint conditions, the model prediction controller is designed by using the method of prediction in time domain of system input and output contraction constraints. Then based on the Lyapunov stability theory, it is proved that the closed-loop control system designed is asymptotically stable. Finally, through a simulation example, the effectiveness of the proposed control strategy based on PIOCC in expanding the feasible solution range and avoiding the divergence of the closed-loop system is verified, which achieves the good rapidity and stability of the unmanned vehicle in path tracking.

    参考文献
    相似文献
    引证文献
引用本文

王志文,辛鹏,孙洪涛,等.基于收缩约束模型预测控制的无人车辆路径跟踪[J].控制与决策,2022,37(3):625-634

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-01-25
  • 出版日期: 2022-03-20
文章二维码