基于刺激-响应分工机制的人工蜂群算法
CSTR:
作者:
作者单位:

1. 郑州轻工业大学 电气信息工程学院,郑州 450002;2. 华中科技大学 人工智能与自动化学院,武汉 430074

作者简介:

通讯作者:

E-mail: rbxiao@hust.edu.cn.

中图分类号:

TP18

基金项目:

科技创新2030-----“新一代人工智能”重大项目(2018AAA0101200);国家自然科学基金项目(61702463);河南省科技攻关项目(192102210111);郑州轻工业大学博士科研基金项目(2017BSJJ004).


Artificial bee colony algorithm based on stimulus-response labor division
Author:
Affiliation:

1. School of Electrical and Information Engineering,Zhengzhou University of Light Industry,Zhengzhou 450002, China;2. School of Artificial Intelligence and Automation, Huazhong University of Science and Technology,Wuhan 430074,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对人工蜂群算法中探索与开采的不平衡以及由此导致的求解精度低、收敛速度慢等问题,提出一种基于刺激-响应分工机制的人工蜂群算法.将探索和开采看成两种不同的搜索任务,令蜜蜂在雇佣蜂阶段执行探索,在跟随蜂阶段执行开采.根据种群多样性设计搜索任务的环境刺激,利用搜索成功率设计蜜蜂个体的响应阈值.在刺激-响应分工机制下,蜜蜂在雇佣蜂和跟随蜂之间灵活转换,从而实现探索和开采的平衡.采用22个基准函数进行仿真实验,实验结果验证了所提出算法的有效性.

    Abstract:

    Aiming at the disadvantages of the imbalance between exploration and exploitation in the artificial bee colony algorithm, as well as the resulting low solution quality and slow convergence speed, this paper proposes an artificial bee colony algorithm based on stimulus-response labor division. Firstly, exploration and exploitation are regarded as two different search tasks, bees explore the search space in the employed bee phase and exploit the search space in the onlooker bee phase. Then, the environmental stimulus of the search task is designed according to the population diversity, and the response threshold of bees is designed according to the search success rate. Finally, under the mechanism of stimulus-response labor division, bees flexibly switch between the employed bee and the onlooker bee to achieve the exploration-exploitation balance. The experimental results on 22 benchmark functions show the high efficiency of the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文

王英聪,刘军辉,肖人彬.基于刺激-响应分工机制的人工蜂群算法[J].控制与决策,2022,37(4):881-891

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-04-28
  • 出版日期:
文章二维码