基于深度在线迁移的变负载下滚动轴承故障诊断方法
CSTR:
作者:
作者单位:

1. 哈尔滨理工大学 电气与电子工程学院,哈尔滨 150080;2. 白俄罗斯国立大学,明斯克 220030

作者简介:

通讯作者:

E-mail: mirrorwyj@163.com.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(51805120);黑龙江省自然科学基金项目(LH2019E058);黑龙江省普通高校基本科研业务专项资金项目(LGYC2018JC022).


Fault diagnosis method of rolling bearing under varying loads based on deep online transfer
Author:
Affiliation:

1. School of Electrical and Electronic Engineering,Harbin University of Science and Technology,Harbin 150080,China;2. Belarusian State University,Minsk 220030,Belarus

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对变负载条件下滚动轴承源域与目标域中相同状态的数据特征分布差异性较大,目标域数据按照序列方式在线获取时,数据更新需重新训练模型的问题,提出一种深度在线迁移的CNN-ISVM(convolutional neural networks-incremental support vector machine)变负载下滚动轴承故障诊断方法.该方法运用短时傅里叶变换得到不同负载下滚动轴承振动信号的频谱图并构建数据集;使用源域数据建立CNN-ISVM预训练模型并保存模型参数;利用迁移学习将源域共享模型参数迁移至目标域CNN-ISVM模型训练过程中,快速建立分类模型;分类模型中的ISVM分类器在保留已学到知识的基础上,在线处理目标域新增数据,无需重新训练.经实验验证,所提出方法可实现数据按照序列方式采集的变负载下滚动轴承多状态在线分类,并具有较好的稳定性及较高的准确率.

    Abstract:

    For the problem that the data feature distribution of the same state in the source domain and target domain of rolling bearing is quite different under varying loads, and the model needs to be retrained for data update when the target domian data is obtained online in a sequential manner, a fault diagnosis method of rolling bearing under varying loads with the deep online transfer CNN-ISVM(convolutional neural networks-incremental support vector machine) is proposed. Short time Fourier transform is used to obtain the time-frequency spectrum of rolling bearing vibration signals under different loads, and the data sets can be constructed; the source domain data is used to build the CNN-ISVM pre-training model, and the model parameters are saved; transfer learning is used to transfer the source domain shared parameters to the target domain CNN-ISVM model training process to quickly establish the classification model; the ISVM classifier in the classification model retains the learned knowledge and processes the new data in the target domain online without being retrained. The experimental results verify that the proposed method can realize multi-state online classification of rolling bearings under varying loads with data collected in a sequential manner, and has better stability and higher accuracy.

    参考文献
    相似文献
    引证文献
引用本文

康守强,刘旺辉,王玉静,等.基于深度在线迁移的变负载下滚动轴承故障诊断方法[J].控制与决策,2022,37(6):1521-1530

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-04-22
  • 出版日期: 2022-06-20
文章二维码