基于特征共享双头Cascade R-CNN的混凝土细观损伤特征检测
CSTR:
作者:
作者单位:

西安建筑科技大学 信息与控制工程学院,西安 710055

作者简介:

通讯作者:

E-mail: zhaoliang@xauat.edu.cn.

中图分类号:

TP183

基金项目:

国家自然科学基金项目(51209167;12002251);陕西省自然科学基金项目(2019JM-474);西安市科技计划项目(2020KJRC0055);陕西省岩土与地下空间工程重点实验室开放基金项目(YT202004).


Feature detection of concrete mesoscopic damage based on feature sharing double-head Cascade R-CNN
Author:
Affiliation:

College of Information and Control Engineering,Xián University of Architecture and Technology,Xián 710055,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    混凝土内部损伤破坏形态具有明显的离散性和随机性,内部损伤特征检测是混凝土细观研究的重要内容.针对已有混凝土结构内部损伤特征检测模型精度低的问题,提出一种特征共享双头Cascade R-CNN模型对混凝土CT图像的损伤特征进行检测.首先,为了有效识别损伤特征的空间信息,构建具有空间敏感性的fc-head(fully connected head)与空间相关性的conv-head(convolution head)相结合的Cascade R-CNN网络模型;其次,通过特征共享的方法将检测网络各层级分类信息进行融合,提升低IOU(intersection over union)阈值(0.5sim0.7)ROI(regions of interest)检测任务的精度.实验结果表明,所提方法在检测混凝土CT图像的损伤特征中平均精度达到91.31%,比原始的Cascade R-CNN提高3.04%,低IOU阈值(0.5sim0.7)ROI平均精度提高1.49%,该模型可以较好地从混凝土CT图像中检测出细观损伤部分,具有精度高、运算简单、易于工程实现等特点.

    Abstract:

    The internal damage of concrete has obvious characteristics of discreteness and randomness, and the detection of internal damage characteristics is an important content of concrete mesoscopic research. To solve the problem of low precision of existing models, this paper proposes a double-head Cascade R-CNN model with feature sharing to detect the damage features of concrete CT images. Firstly, a Cascade R-CNN network model, which combines spatially sensitive fc-head (fully connected head) and spatially correlation conv-head (convolution head), is constructed to effectively identify the spatial information of the damage feature. Then, the classification information of each level of the detection network is merged through the feature sharing method, which improves the precision of low IOU(intersection over union) threshold (0.5sim0.7) ROI (regions of interest) detection tasks. The results show that the average precision of the proposed method is 91.31%, which is 3.04% higher than that of the original. The average accuracy of low IOU threshold (0.5sim0.7) ROI is improved by 1.49%. The proposed model can better detect the mesoscopic damage part from the concrete CT image with the features of high precision, simple computation and easy engineering realization.

    参考文献
    相似文献
    引证文献
引用本文

赵亮,高升伦,陈俊英,等.基于特征共享双头Cascade R-CNN的混凝土细观损伤特征检测[J].控制与决策,2022,37(7):1745-1751

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-05-25
  • 出版日期: 2022-07-20
文章二维码