考虑加热炉生产因素的热轧板坯轧制计划模型与算法
CSTR:
作者:
作者单位:

1. 北京科技大学 经济管理学院, 北京 100083;\hspace{3pt};2. 钢铁生产制造执行系统技术教育部工程研究中心, 北京 100083

作者简介:

通讯作者:

E-mail: wangbl@ustb.edu.cn.

中图分类号:

TP301

基金项目:

国家自然科学基金项目(71701016,71231001);教育部人文社会科学研究青年基金项目(17YJC630143);北京市自然科学基金项目(9174038);中央高校基本科研业务费专项资金项目(FRF-BD-20-16A).


Model and algorithm for rolling planning of hot-rolled slab with reheating furnace production factors
Author:
Affiliation:

1. School of Economics and Management,University of Science and Technology Beijing,Beijing 100083,China;2. Engineering Research Center of MES Technology for Iron & Steel Production of Ministry of Education,Beijing 100083,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    加热炉生产是影响热轧机组利用率和轧制计划质量的重要环节之一.通过分析加热炉对热轧生产的影响,抽取板坯标准在炉时间和出炉温度这两个关键因素,建立热轧板坯轧制计划的整数规划模型,并提出自适应邻域搜索算法.在算法中设计约束满足策略、自适应搜索策略和反向学习邻域搜索策略.约束满足策略针对目标特征和加热炉因素设计两种值选择规则,用于生成高质量初始解;自适应搜索策略能够自主选择邻域结构和终止邻域搜索,有效优化邻域结构选择方式和算法收敛速度;反向学习邻域搜索策略基于反向学习技术增强解空间多样性,提高全局搜索能力.基于实际生产数据设计多种规模的实验,通过实验验证了算法的有效性.

    Abstract:

    Reheating furnace production is one of the important procedures that affect the utilization rate of hot rolling mills and the quality of rolling plans. By analyzing the influence of reheating furnace on hot rolling production, two key factors of slab, standard time in furnace and discharge temperature, are extracted. The integer programming model of hot-rolled slab rolling plans is established, and an adaptive neighborhood search algorithm is proposed. The constraint satisfaction strategy, the adaptive search strategy and the reverse learning neighborhood search strategy are designed in the algorithm. Two value selection rules of the constraint satisfaction strategy are designed for target characteristics and furnace factors to generate high-quality initial solutions. Using the adaptive search strategy can select neighborhood structure and terminate neighborhood search autonomously, and optimize the neighborhood structure selection process and algorithm convergence speed effectively. The reverse learning neighborhood search strategy enhances the diversity of the solution space based on the reverse learning technology, which can improve the global search ability. Based on actual production data, experiments of various scales are designed to verify the effectiveness of the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文

张卓伦,张文新,李铁克,等.考虑加热炉生产因素的热轧板坯轧制计划模型与算法[J].控制与决策,2022,37(7):1827-1836

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-05-25
  • 出版日期: 2022-07-20
文章二维码