符号网络下一类非线性二分一致性系统的跟踪控制
CSTR:
作者:
作者单位:

1. 湖南工商大学 理学院,长沙 410205;2. 统计学习与智能计算湖南省重点实验室,长沙 410205

作者简介:

通讯作者:

E-mail: denan2003@163.com.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(12001186);湖南省教育厅科研项目(18A309,19C1037,20C0520,20B158).


Tracking control for one class of nonlinear bipartite consensus systems under signed network
Author:
Affiliation:

1. School of Science,Hunan University of Technology and Business,Changsha 410205,China;2. Key Laboratory of Hunan Province for Statistical Learning and Intelligent Computation,Changsha 410205,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    研究具有对抗交互的一类非线性多智能体系统的二分一致性跟踪控制问题,借助有向符号图刻画智能体之间的通信关系,并假定符号图是结构平衡的.进一步,借助符号图网络对二分一致性跟踪问题进行公式化描述.基于最近邻原则,结合拉普拉斯矩阵、牵制矩阵、符号函数、耦合增益参数等,设计分布式控制律.利用Barbalat引理和李亚谱诺夫函数证明整个闭环系统的渐近稳定性,在保持闭环系统稳定的条件下推导出耦合增益的下界.最后通过仿真验证所提出方法的有效性.

    Abstract:

    This paper investigates the bipartite consensus tracking problem of one class of nonlinear multi-agent systems with antagonistic interactions in details. The communication relationship among agents is depicted as a directed signed graph, which is assumed to be structurally balanced. The bipartite consensus tracking problem is furthermore formulated by integrating with the signed graph network. Based on the nearest neighborhood rule, a distributed control law is designed accordingly with the aid of the Laplacian matrix, a pinning matrix, a signed function and a coupling gain parameter. The asymptotic stability of the closed-loop system is rigorously proved by the Lyapunov function with the aid of the Barbalat lemma. The lower bound condition for the coupling gain is derived to guarantee that the closed-loop system is asymptotical stable. The effectiveness of the proposed approach is finally verified by simulation results.

    参考文献
    相似文献
    引证文献
引用本文

刘建刚,杨胜杰,王仲梅,等.符号网络下一类非线性二分一致性系统的跟踪控制[J].控制与决策,2022,37(7):1909-1914

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-05-25
  • 出版日期: 2022-07-20
文章二维码