面向多峰优化问题的自主学习萤火虫算法
CSTR:
作者:
作者单位:

1. 南昌工程学院 信息工程学院,南昌 330099;2. 南昌工程学院 江西省水信息协同感知与智能 处理重点实验室,南昌 330099;3. 华中科技大学 人工智能与自动化学院,武汉 430074

作者简介:

通讯作者:

E-mail: rbxiao@hust.edu.cn.

中图分类号:

TP18

基金项目:

科技创新2030“新一代人工智能”重大项目(2018AAA0101200);国家自然科学基金项目(52069014, 51669014);江西省杰出青年基金项目(2018ACB21029).


Firefly algorithm based on self-learning for multi-peak optimization problem
Author:
Affiliation:

1. School of Information Engineering,Nanchang Institute of Technology,Nanchang 330099,China;2. Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing,Nanchang Institute of Technology,Nanchang 330099,China;3. School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan 430074,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    萤火虫算法在处理多峰优化问题时易陷入局部最优,针对该问题提出一种自主学习萤火虫算法.该算法将粒子按适应度划为自主学习粒子和普通粒子,自主学习粒子从种群中随机选择一个粒子并随机选择一个维度,使用3种学习策略产生3个候选解,在自身以及候选解中选择最好的解;普通粒子同时选择两个优于自身的粒子进行学习.自主学习粒子能够维持算法对多个极值空间的探索并提高算法优化精度;普通粒子以两个粒子的混合信息为指引,使算法跳出局部最优.此外,使用淘汰机制,让算法舍弃对劣质极值空间的维护,进而提高对优质极值空间的开发,实验结果表明,所提出算法在处理多峰优化问题时具有高效的性能.

    Abstract:

    The firefly algorithm is prone to fall into local optimality when dealing with multi-peak optimization problems. To solve this problem, this paper proposes a firefly algorithm based on self-learning. According to the fitness, the particles are divided into self-learning particles and ordinary particles. The self-learning particles randomly select a particle from the population and randomly select a dimension to generate three candidate solutions by using three learning strategies, and the best solution among itself and the candidate solutions is obtained. Ordinary particles simultaneously choose two particles superior to themselves to learn. Self-learning particles can not only maintain the algorithm's exploration of multiple extremum spaces, but also improve the algorithm's optimization accuracy. Guided by the mixed information of two particles, ordinary particles make the algorithm jump out of the local optimal. In addition, the elimination mechanism is used to make the algorithm abandon the maintenance of low-quality extremum space, so as to improve the development of high-quality extremum space. Experimental results show that the proposed algorithm has high performance in multi-peak optimization problems.

    参考文献
    相似文献
    引证文献
引用本文

赵嘉,陈文平,肖人彬,等.面向多峰优化问题的自主学习萤火虫算法[J].控制与决策,2022,37(8):1971-1980

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-06-29
  • 出版日期: 2022-08-20
文章二维码