基于可能度矩阵的概率语言多属性决策方法
CSTR:
作者:
作者单位:

陆军指挥学院,南京 210045

作者简介:

通讯作者:

E-mail: bingfang_ch@163.com.

中图分类号:

C934

基金项目:


Probabilistic linguistic multi-attribute decision-making method based on possibility degree matrix
Author:
Affiliation:

Army Command College of PLA,Nanjing 210045,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决两个概率语言术语集之间的优劣比较这一基本问题,在已有可能度计算方法的基础上,提出一种改进的可能度公式.该可能度公式能够克服已有可能度公式的缺点,具有计算过程简单、区分能力强、易于拓展应用等特点.进一步研究发现:基于该可能度公式对多个评估对象进行两两比较得到的可能度矩阵,具有加性一致性的模糊互补偏好关系;将多个可能度矩阵加权平均得到的综合可能度矩阵,也具有加性一致性的模糊互补偏好关系.据此,构建一种概率语言多属性决策方法,并将其应用于军队院校教育教学质量评价.数值实验表明,所提出的概率语言多属性决策方法结构简单、计算过程清晰且具有较强的自检能力,能够通过确保计算过程的正确性来保证决策结果的有效性.

    Abstract:

    To solve the basic problem of comparing two probabilistic linguistic term sets(PLTSs), we propose an improved possibility degree(PD) formula based on the existing ones. The new PD formula is simple to operate and can effectively distinguish any two PLTSs. Moreover, its application can be easily extended. It is found in further research that the PD matrix constructed by pairwise comparing multiple alternatives, based on the new PD formula, constitutes a fuzzy reciprocal preference relationship with additive consistency; the comprehensive possibility matrix constructed by weighted averaging multiple PD matrices, also constitutes a fuzzy reciprocal preference relationship with additive consistency. Based on these findings, we develop a probabilistic linguistic multi-attribute decision-making(MADM) method, and apply it to evaluate the education and teaching quality in military academies. Numerical results show that the proposed probabilistic linguistic MADM method employs a simple structure and has a strong self-checking capability in the calculation process, which can ensure the validity of the decision-making results.

    参考文献
    相似文献
    引证文献
引用本文

方冰,韩冰,谢德于.基于可能度矩阵的概率语言多属性决策方法[J].控制与决策,2022,37(8):2149-2156

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-06-29
  • 出版日期: 2022-08-20
文章二维码