基于多区域中心点预测的动态多目标优化算法
CSTR:
作者:
作者单位:

1. 燕山大学 电气工程学院,河北 秦皇岛 066004;2. 燕山大学 智能控制系统与智能装备教育部工程研究中心,河北 秦皇岛 066004

作者简介:

通讯作者:

E-mail: sunhao@ysu.edu.cn.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(62003296);河北省自然科学基金项目(F2020203031);河北省教育厅科技项目(QN2020225);国家重点研发计划项目(2018YFB1702300).


Dynamic multi-objective optimization algorithm based on multi-regional center point prediction
Author:
Affiliation:

1. School of Electrical Engineering,Yanshan University,Qinhuangdao 066004,China;2. Engineering Research Center of the Ministry of Education for Intelligent Control System and Intelligent Equipment,Yanshan University,Qinhuangdao 066004,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现实生活中存在很多动态多目标优化问题(DMOPs),这类问题要求算法在环境变化后快速收敛到新的Pareto前沿,并保持解集的多样性,随着Pareto前沿复杂程度的增加,这一问题更加突出.鉴于此,提出一种基于多区域中心点预测的动态多目标优化算法(MCPDMO).首先,根据环境变化的严重程度将种群划分为多个子区域,使得个体的分配更加适应动态变化的环境;然后,分别计算每个子区域的中心点,对不同子区域在不同时刻的中心点建立时间序列,并利用差分模型预测新环境的最优解集,以提高算法对不同环境变化的响应能力;最后,为验证算法的有效性,与3种动态多目标优化算法在10个标准测试函数上进行仿真实验.实验结果表明,所提出算法在具有复杂Pareto前沿的动态问题上表现出更优的收敛性和分布性.

    Abstract:

    In real life, there are many dynamic multi-objective optimization problems (DMOPs), which require algorithms to quickly converge to the new Pareto front and maintain the diversity of the solution set. As the complexity of the Pareto front increases, this problem is more prominent. For this problem, a dynamic multi-objective optimization algorithm based on multi-regional center point prediction (MCPDMO) is proposed. Firstly, the population is divided into multiple sub-regions according to the degree of environmental change, which makes the allocation of individuals more adaptable to the dynamic environment. Then, the center point of each sub-region is calculated respectively. The time series are established with the center point of different sub-regions at different times, and the difference model is used to predict the optimal solution set of the new environment, which improve the algorithm's ability to respond to changes in different environments. To verify the effectiveness of the algorithm, the simulation experiments are conducted on 10 test functions with 3 dynamic multi-objective optimization algorithms. The results show that the algorithm exhibits better convergence and distribution in dynamic problems with complex Pareto front.

    参考文献
    相似文献
    引证文献
引用本文

马学敏,杨景明,孙浩,等.基于多区域中心点预测的动态多目标优化算法[J].控制与决策,2022,37(10):2477-2486

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-08-31
  • 出版日期: 2022-10-20
文章二维码