基于TN-LP-LSTM-SVM混合模型的原油期货次日价格变化方向和波动率大小预测
CSTR:
作者:
作者单位:

华中科技大学 管理学院,武汉 430074

作者简介:

通讯作者:

E-mail: xmgwt@hust.edu.cn.

中图分类号:

F416.22

基金项目:

国家自然科学基金面上项目(70871046,71171091,71471070).


Predicting next-day price change direction and volatility size of crude oil futures based on a hybrid TN-LP-LSTM-SVM model
Author:
Affiliation:

School of Management,Huazhong University of Science and Technology,Wuhan 430074,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    原油价格受国际政治、经济、军事、外交以及其他复杂因素的影响,这些因素的频繁变化使油价表现出随机波动,给原油投资及交易决策带来困难,准确预测油价已成为能源领域学术界的研究热点.但是,现有关于原油价格预测的文献大多数是预测原油价格的数值而不是变化方向,而且不是同时预测原油价格和波动率,因此无法给投资者充分的决策指导信息.为了填补这一研究空白,提出一种结合转移网络(TN)、链接预测(LP)、长短期记忆模型(LSTM)和支持向量机(SVM)的新的混合模型TN-LP-LSTM-SVM来更精确地预测WTI期货次日价格变化方向和波动率大小,为投资者、能源相关企业和参与政策决策的政府人员提供有益的建议.在不同的时间窗口下($h\in [1,50]$且$h\in {\bm Z

    Abstract:

    Crude oil prices are influenced by international political, economic, military, diplomatic and other complex factors, and the frequent changes in these factors cause oil prices to exhibit random fluctuations, making crude oil investment and trading decisions difficult. Therefore, predicting oil prices accurately has become a hot research topic in the academic field of energy. However, most of the existing literature on the crude oil price forecasting predicts the value of crude oil prices rather than the change direction, and does not predict crude oil prices and volatility simultaneously, thus can't give investors sufficient information to guide their decisions. To fill this research gap, this paper proposes a new hybrid TN-LP-LSTM-SVM model combining the transition network(TN), link prediction (LP), long short-term memory model(LSTM) and support vector machine(SVM) to predict the next-day price change direction and volatility size of WTI futures more accurately, providing useful advices for investors, energy-related companies, and government personnel involved in policy decisions. Comparing the prediction accuracy of the TN-LP-LSTM-SVM model with the CNN-SVM model, LSTM and SVM for different time windows($h\in [1,50]$ and $h\in {\bm Z

    参考文献
    相似文献
    引证文献
引用本文

赵戈雅,薛明皋.基于TN-LP-LSTM-SVM混合模型的原油期货次日价格变化方向和波动率大小预测[J].控制与决策,2022,37(10):2627-2636

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-08-31
  • 出版日期: 2022-10-20
文章二维码