加速冲击损伤退化系统剩余寿命预测及预测维修决策
CSTR:
作者:
作者单位:

1. 太原科技大学 工业与系统工程研究所,太原 030024;2. 太原科技大学 电子信息工程学院,太原 030024;3. 太原科技大学 经济与管理学院,太原 030024;4. 中北大学 大数据与视觉计算研究所,太原 030051;5. 中国煤炭科工集团 太原研究院有限公司,太原 030006

作者简介:

通讯作者:

E-mail: zhangxh@tyust.edu.cn.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(72071183,71701140,61703297);山西省高等学校科学研究优秀成果培育项目(2019SK028);山西省重点研发计划项目(201703D111011).


Remaining useful life prediction and predictive maintenance decision of accelerated shock damage deteriorating system
Author:
Affiliation:

1. Division of Industrial and System Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China;2. School of Electronic Information Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China;3. School of Economics and Management,Taiyuan University of Science and Technology,Taiyuan 030024,China;4. Division of Big Data and Visual Computing,North University of China,Taiyuan 030051,China;5. Taiyuan Research Institute Co., Ltd,China Coal Technology Engineering Group,Taiyuan 030006,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着检测传感技术的发展,诸如风力发电机叶片等可对其状态进行检测,并依据检测结果进行剩余寿命预测.但此类系统在运行中受环境冲击影响较大,如何对冲击影响下的系统剩余寿命进行预测,并结合预测结果进行经济可靠的维修决策是一个值得研究的问题.对此,针对状态可检测的连续退化系统,研究考虑加速冲击损伤特性下的系统剩余寿命预测及基于预测的维修决策.首先,考虑自然退化和与退化相关的冲击损伤,构建加速冲击损伤退化模型和剩余寿命预测模型;其次,制定基于周期检测的状态维修与预测维修相结合的混合维修策略,并推导不同维修活动的发生概率;然后,构建以长期平均费用率最小为目标,以检测间隔和故障率阈值为决策变量的决策模型,并给出了优化解法;最后,以风力发电机叶片为案例验证模型的适用性和有效性,对系统的参数进行灵敏度分析,并与未考虑加速冲击损伤和未考虑预测的维修决策结果进行对比分析.

    Abstract:

    With the development of detection and sensing technology, status of systems such as wind turbine blades can be detected, and remaining useful life(RUL) can be predicted according to the detection results. However, such systems are greatly impacted by environmental shock in operation. It is worth studying how to predict the RUL of systems under impact and how to make economic and reliable maintenance decisions link the prediction results. In this paper, the RUL prediction and the predictive maintenance(PdM) decision are studied for the continuous deteriorating system with condition detectability. Firstly, the accelerated shock damage degradation model and the RUL prediction model are modeled considering the degradation and the degradation-related shock damage. Secondly, the combined maintenance policy of condition based maintenance(CBM) and PdM on periodic inspection is formulated, and the occurrence probability of different maintenance activities is derived. Then, the maintenance decision model is constructed with the objective of minimizing the long-term average cost rate and the decision variables of inspection period and failure rate threshold, and the optimized solution is given. Finally, the applicability and effectiveness of the model are verified by taking the fan turbine blade as an example, and the sensitivity analysis of the system parameters is carried out. The optimized solution is compared with the maintenance decision results without accelerated shock damage and without prediction.

    参考文献
    相似文献
    引证文献
引用本文

曾建潮,武鑫宇,张晓红,等.加速冲击损伤退化系统剩余寿命预测及预测维修决策[J].控制与决策,2022,37(10):2647-2656

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-08-31
  • 出版日期: 2022-10-20
文章二维码