基于主动样本精选与跨模态语义挖掘的图像情感分析
CSTR:
作者:
作者单位:

华东交通大学 软件学院,南昌 330013

作者简介:

通讯作者:

E-mail: zhanghongbin@whu.edu.cn.

中图分类号:

TP391

基金项目:

国家自然科学基金项目(61762038,61861016);江西省研究生创新专项项目(YC2020-S352).


Image sentiment analysis via active sample refinement and cross-modal semantics mining
Author:
Affiliation:

School of Software,East China Jiaotong University,Nanchang 330013,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    图像情感分析是机器视觉领域的研究热点,它面临的关键问题是:标注者的主观差异导致情感标签明确的高质量样本匮乏,且异构图像特征间跨模态语义未有效利用.为此,提出基于主动样本精选与跨模态语义挖掘的图像情感分析模型ASRF2(active sample refinement & feature fusion):融合主动学习与样本精选思想,设计主动样本精选策略,优选情感标签明确的样本;对异构图像特征执行判别相关分析,生成能准确刻画图像情感内容的低维跨模态语义;采用跨模态语义训练Catboost模型,实现图像情感分析.在TwitterI与FI数据集上验证ASRF2模型,识别准确率分别达90.06%和75.77%,优于主流基线且实时效率良好.与基线相比,ASRF2模型仅需两类特征,参数调制简单,更易复现.ASR策略还具备一定的泛化性,可为基线模型提供优质训练样本,以改善识别性能.

    Abstract:

    Image sentiment analysis is a research focus in the field of computer vision. However, we are faced with the following key problems: First, owing to the subjective differences of different annotators, high-quality samples with definite sentimental annotations are very scarce. Second, the implicit cross-modal semantics among heterogeneous features has not been fully explored. To address these two problems, we propose an active sample refinement & feature fusion (ASRF2) via active sample refinement and cross-modal semantics mining: an active sample refinement strategy is designed by fusing the active learning and sample refinement ideas. High-quality samples with definite sentimental annotations are obtained in turn. Then, the state-of-the-art discriminant correlation analysis (DCA) algorithm is employed to fully mine the cross-modal correlations among the heterogeneous features. Low-dimensional but more discriminant cross-modal semantics that can better depict the key sentimental contents of images are generated. The cross-modal semantics is used to train a Catboost classifier and complete image sentiment analysis. We validate the proposed ASRF2 model on the TwitterI and FI datasets. The corresponding accuracies reach about 90.06% and 75.77%, respectively, which outperform other state-of-the-art baselines as well as the real-time efficiency. Compared with the baselines, the proposed model only needs two image features, and it is easy to tune and reproduced the ASRF2 model. Moreover, the ASR strategy is robust, which can offer many more high-quality samples for the baselines to improve the final recognition performance.

    参考文献
    相似文献
    引证文献
引用本文

张红斌,石皞炜,熊其鹏,等.基于主动样本精选与跨模态语义挖掘的图像情感分析[J].控制与决策,2022,37(11):2949-2958

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-09-30
  • 出版日期: 2022-11-20
文章二维码