约束非线性车辆队列分布式多目标模型预测控制
作者:
作者单位:

浙江工业大学 信息工程学院,杭州 310023

通讯作者:

E-mail: hdfzj@zjut.edu.cn.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(61773345);浙江省高校基本科研业务费项目(RF-C2020003).


Distributed multi-objective model predictive control for constrained nonlinear vehicle platoons
Author:
Affiliation:

College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对具有状态和控制约束的非线性车辆队列系统多目标控制问题,提出一种分布式多目标模型预测控制(model predictive control, MPC)策略.首先,基于前车-后车单向通信拓扑,建立网联车辆队列非线性纵向巡航模型,应用字典序算法描述分布式多目标MPC问题;然后,通过设计弦稳定与收缩约束,并结合MPC三要素条件,保证车辆队列在经济性能与协同性能最优条件下的稳定性和弦稳定性结果;最后,通过典型工况的仿真结果验证所提出策略的有效性.

    Abstract:

    This paper presents a distributed multi-objective model predictive control (MPC) strategy for multi-objective control problems of nonlinear vehicle platoon systems subject to state and control constraints. Based on the predecessor-follower communication topology, the nonlinear longitudinal cruise control models of connected vehicle platoons are established. The lexicographic method is applied to formulate the distributed multi-objective optimization problem. Moreover, together with the triple elements of MPC, the constraints on string stability and contractive are designed to guarantee stability and string stability in the context of optimality of economic performance and coordination performance of the vehicle platoon. Finally, simulation results of typical conditions verify the effectiveness of the proposed scheme.

    参考文献
    [1] Shen P Y, Zhang X B, Fang Y C.Complete and time-optimal path-constrained trajectory planning with torque and velocity constraints: Theory and applications[J].IEEE/ASME Transactions on Mechatronics, 2018, 23(2): 735-746.
    [2] Hu Y J, Zhan J Y, Yuan Q, et al.A multi-agent flocking system with communication delays via distributed model predictive control[C].Proceedings of the 36th Chinese Control Conference.Dalian, 2017: 8449-8454.
    [3] Teo R, Stipanovic D M, Tomlin C J.Decentralized spacing control of a string of multiple vehicles over lossy datalinks[J].IEEE Transactions on Control Systems Technology, 2010, 18(2): 469-473.
    [4] Caruntu C F, Copot C, Lazar C, et al.Decentralized predictive formation control for mobile robots without communication[C].IEEE the 15th International Conference on Control and Automation.Piscataway: IEEE, 2019: 555-560.
    [5] K\"ohler P N, M\"uller M A, Allg\"ower F.A distributed economic MPC framework for cooperative control under conflicting objectives[J].Automatica, 2018, 96: 368-379.
    [6] Liu Y, Zong C F, Zhang D.Lateral control system for vehicle platoon considering vehicle dynamic characteristics[J].IET Intelligent Transport Systems, 2019, 13(9): 1356-1364.
    [7] Middleton R H, Braslavsky J H.String instability in classes of linear time invariant formation control with limited communication range[J].IEEE Transactions on Automatic Control, 2010, 55(7): 1519-1530.
    [8] Ferrari-Trecate G, Galbusera L, Marciandi M P E, et al.Model predictive control schemes for consensus in multi-agent systems with single-and double-integrator dynamics[J].IEEE Transactions on Automatic Control, 2009, 54(11): 2560-2572.
    [9] Kuwata Y, Richards A, Schouwenaars T, et al.Distributed robust receding horizon control for multivehicle guidance[J].IEEE Transactions on Control Systems Technology, 2007, 15(4): 627-641.
    [10] Franco E, Magni L, Parisini T, et al.Cooperative constrained control of distributed agents with nonlinear dynamics and delayed information exchange: A stabilizing receding-horizon approach[J].IEEE Transactions on Automatic Control, 2008, 53(1): 324-338.
    [11] Li H P, Shi Y.Distributed receding horizon control of large-scale nonlinear systems: Handling communication delays and disturbances[J].Automatica, 2014, 50(4): 1264-1271.
    [12] Li H P, Shi Y.Robust distributed model predictive control of constrained continuous-time nonlinear systems: A robustness constraint approach[J].IEEE Transactions on Automatic Control, 2014, 59(6): 1673-1678.
    [13] Li S K, Yang L X, Gao Z Y.Distributed optimal control for multiple high-speed train movement: An alternating direction method of multipliers[J].Automatica, 2020, 112: 108646.
    [14] Shen C, Shi Y, Buckham B.Path-following control of an AUV: A multiobjective model predictive control approach[J].IEEE Transactions on Control Systems Technology, 2019, 27(3): 1334-1342.
    [15] Zavala V M, Flores-Tlacuahuac A.Stability of multiobjective predictive control: A utopia-tracking approach[J].Automatica, 2012, 48(10): 2627-2632.
    [16] He D F, Yu S M, Ou L L.Lexicographic MPC with multiple economic criteria for constrained nonlinear systems[J].Journal of the Franklin Institute, 2018, 355(2): 753-773.
    [17] Chinchuluun A, Pardalos P M.A survey of recent developments in multiobjective optimization[J].Annals of Operations Research, 2007, 154(1): 29-50.
    [18] Marler R T, Arora J S.Survey of multi-objective optimization methods for engineering[J].Structural and Multidisciplinary Optimization, 2004, 26(6): 369-395.
    [19] Mayne D Q.Model predictive control: Recent developments and future promise[J].Automatica, 2014, 50(12): 2967-2986.
    [20] Zheng Y, Li S E, Li K Q, et al.Distributed model predictive control for heterogeneous vehicle platoons under unidirectional topologies[J].IEEE Transactions on Control Systems Technology, 2017, 25(3): 899-910.
    [21] Dunbar W B, Caveney D S.Distributed receding horizon control of vehicle platoons: Stability and string stability[J].IEEE Transactions on Automatic Control, 2012, 57(3): 620-633.}
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈龙,何德峰,李壮.约束非线性车辆队列分布式多目标模型预测控制[J].控制与决策,2022,37(12):3122-3128

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2022-11-17
  • 出版日期: 2022-12-20
文章二维码