基于TVA-TCN的制造过程关键参数多步预测方法
CSTR:
作者:
作者单位:

1. 中国科学院 网络化控制系统重点实验室,沈阳 110016;2. 中国科学院 沈阳自动化研究所,沈阳 110016;3. 中国科学院 机器人与智能制造创新研究院,沈阳 110169;4. 中国科学院大学,北京 100049

作者简介:

通讯作者:

E-mail: zhouxf@sia.cn.

中图分类号:

TP391;TP273

基金项目:

辽宁省重点研发计划项目(2020JH2/10100039).


Multi-step prediction method for key parameters of manufacturing process based on TVA-TCN
Author:
Affiliation:

1. Key Laboratory of Networked Control Systems,Chinese Academy of Sciences,Shenyang 110016,China;2. Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016,China;3. Institutes for Robotics and Intelligent Manufacturing,Chinese Academy of Sciences,Shenyang 110169,China;4. University of Chinese Academy of Sciences,Beijing 100049,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    制造过程关键参数的准确预测对制造过程的精确控制起关键作用,现有预测方法通常未考虑时间动态特性,多步预测性能不佳,无法满足制造过程实际需求.对此,提出一种基于时变注意力时间卷积网络(TVA-TCN)的制造过程关键参数多步预测方法.首先,鉴于普通卷积网络感受野的局限性,利用多通道时间卷积网络提取数据的长期依赖关系,并使用Softplus激活函数降低对数据异常值的敏感度;其次,提出一种时变模型结构,通过提取上一时间步的隐藏层信息和输出信息,使得模型不仅能够随时间动态更新,而且可以缓解梯度消失,从而提高多步预测性能;最后,利用食品加工制造过程的实际数据进行多步预测实验,结果表明所提出方法与传统的方法相比具有明显的优势.

    Abstract:

    Accurate prediction of key parameters in tobacco primary processing plays a key role in its precise optimization and control. Existing prediction methods usually do not consider time dynamic characteristics, and the performance of multi-step prediction is not good, which cannot meet the actual index needs of tobacco primary processing. In response to the above problems, a multi-step prediction method for key parameters of tobacco primary processing based on the time-varying attention-temporal convolutional network (TVA-TCN) is proposed. Firstly, for the key information in the input variables, the attention mechanism is introduced to capture the information. Then, a multi-channel temporal convolutional network is used to extract the long-term dependence of the data. Finally, by extracting the hidden layer information and output information of the previous time step, the model can be dynamically updated over time, thereby improving the performance of multi-step prediction. Multi-step prediction experiments are carried out using real data of tobacco primary processing, and the results show that the proposed method has obvious advantages compared with traditional methods.

    参考文献
    相似文献
    引证文献
引用本文

彭慧,朱雪靖,周晓锋,等.基于TVA-TCN的制造过程关键参数多步预测方法[J].控制与决策,2022,37(12):3321-3328

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-11-17
  • 出版日期: 2022-12-20
文章二维码