有色噪声干扰下径向基函数非线性模型的滤波辨识方法
CSTR:
作者:
作者单位:

江南大学

作者简介:

通讯作者:

中图分类号:

TP273

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Filtering-based identification method for radial basis function-based nonlinear models with colored noises
Author:
Affiliation:

Jiangnan University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    径向基函数具有形式简单、节点配置灵活等特点,使得其可以构成网络来拟合复杂非线性系统. 径向基函数构成的网络可描述非线性模型映射关系,研究有色噪声干扰下一类径向基函数非线性模型的参数估计问题. 首先,为了抑制有色噪声对参数估计的影响,在不改变模型输入输出关系的前提下,利用数据滤波技术设计滤波器对观测数据进行滤波,实现有色噪声干扰下辨识模型的白噪化处理?然后,运用梯度搜索,结合多新息辨识理论,提出估计该类径向基函数非线性模型的滤波多新息增广随机梯度算法?最后,考虑到模型的参数可分离特性, 在滤波辨识的框架下, 基于分解技术, 利用递推搜索方法, 提出估计该类径向基函数非线性模型的三阶段滤波多新息增广递推算法. 仿真结果表明了所提出算法的有效性和优越性.

    Abstract:

    Radial basis functions have the features of simple form and flexible node configuration, which can form networks to fit complex nonlinear systems. The networks composed of radial basis functions can describe nonlinear model mapping relationships. In this paper, the parameter estimation problem of a class of radial basis function-based nonlinear models with colored noises is studied. In order to suppress the influence of colored noise on the parameter estimation, the data filtering technique is used to design a filter to filter the observed data without changing the model input-output relationship, which realizes the white noise processing of the identification models with colored noises. On this basis, a filtering-based multi-innovation extended stochastic gradient algorithm is proposed for estimating this type of radial basis function-based nonlinear models by using the gradient search and combining the multi-innovation identification theory. Furthermore, considering the parameter separability of the models, in the framework of filtering identification, a three-stage filtering-based multi-innovation extended recursive algorithm is proposed for estimating this type of radial basis function-based nonlinear models by using the decomposition technique and recursive search method. The simulation results show the effectiveness and superiority of the proposed algorithms.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-19
  • 最后修改日期:2024-05-06
  • 录用日期:2023-11-18
  • 在线发布日期: 2024-01-16
  • 出版日期:
文章二维码