多智能体系统的分布式快速有限时间二分跟踪一致性
CSTR:
作者:
作者单位:

1.青岛大学数学与统计学院;2.青岛大学自动化学院

作者简介:

通讯作者:

中图分类号:

TP273

基金项目:

国家自然科学基金资助项目(62033007,61873136);山东省自然科学基金资助项目(ZR2021MF089)


Distributed Fast Finite-Time Bipartite Tracking Consensus for Multi-Agent Systems
Author:
Affiliation:

1.School of Mathematics and Statistics, Qingdao University;2.School of Automation, Qingdao University

Fund Project:

National Natural Science Foundation of China(62033007,61873136);Natural Science Foundation of Shandong Province of China(ZR2021MF089)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    研究带有不确定扰动的一阶非线性多智能体系统的分布式快速有限时间二分跟踪一致性问题,其中领导者具有所有跟随者都未知的外部输入.基于全局有限时间稳定性理论、代数图论和变量变换,提出并分析一种静态分布式非光滑协议,证明在含扰动的非线性多智能体系统中,所有跟随者能在有限时间内快速地跟踪上时变的期望状态.该协议的局限性是控制增益会依赖于某些全局信息,如Laplacian矩阵的谱.为了消除这一限制,进一步设计一种自适应分布式协议.理论分析表明,所考虑的多智能体系统在控制增益不依赖于全局信息的前提下同样能实现快速有限时间二分跟踪一致性.最后通过两个仿真实例验证所提算法的可行性和有效性.

    Abstract:

    A distributed fast finite-time bipartite tracking consensus problem for first-order nonlinear multi-agent systems with uncertain disturbances is studied, where the leader has an external input unknown to all followers. Based on global finite-time stability theory, algebraic graph theory and variable transformation, a static distributed non-smooth protocol is proposed and analyzed. It is proved that in a nonlinear multi-agent system with disturbance, all the followers can track the time-varying expected state rapidly in a finite time. The limitation of this protocol is that the control gains depend on some global information, such as the spectrum of the Laplacian matrix. In order to eliminate this limitation, an adaptive distributed protocol is further designed. Theoretical analysis shows that the multi-agent system can achieve fast finite-time bipartite tracking consensus on the premise that the control gain does not depend on global information. Finally, two simulation examples are used to verify the feasibility and effectiveness of the proposed algorithms.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-28
  • 最后修改日期:2024-07-03
  • 录用日期:2023-09-11
  • 在线发布日期: 2023-09-22
  • 出版日期:
文章二维码