基于聚类引导和目标值和的高维多目标进化算法
CSTR:
作者:
作者单位:

火箭军工程大学

作者简介:

通讯作者:

中图分类号:

TP18

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


A many-objective evolutionary algorithm based on clustering and the sum of objectives
Author:
Affiliation:

Rocket Force University of Engineering

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于分解的高维多目标进化算法在处理不规则前沿优化问题时需要调整参考向量,为避免这一复杂操作,提出一种基于聚类引导和目标值和的高维多目标进化算法。该算法借助一个储存非支配解并定期更新的精英集,通过聚类引导当前种群进化,从而使当前种群保持较好的多样性。选择个体时,根据Pareto支配关系以及目标值和衡量个体的收敛性,基于该收敛性度量方式进行非支配排序和适应值排序,从而选择收敛性较好的个体。与7种算法在2套高维多目标优化测试题上进行对比实验,实验结果表明,该算法可有效解决不同类型的高维多目标优化问题。

    Abstract:

    Decomposition-based many-objective evolutionary algorithms need to adjust reference vectors when solving problems with irregular Pareto fronts. To avoid this complicated operation, this paper proposes a many-objective evolutionary algorithm based on clustering and the sum of objectives referred to as CSEA. This algorithm introduces a periodically updated external population to store non-dominated solutions, which guides the evolving directions of the current population through clustering and maintains the diversity of the current population. When selecting solutions, CSEA evaluates convergence according to Pareto dominance and the sum of objectives, and then select well-converged solutions according to non-dominated sorting and fitness-based sorting. Compared with seven algorithms on two many-objective optimization test suites, CSEA is effective on many-objective optimization problems with various shapes of Pareto fronts.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-06
  • 最后修改日期:2024-01-15
  • 录用日期:2023-10-01
  • 在线发布日期: 2023-10-25
  • 出版日期:
文章二维码