基于改进天牛须优化粒子滤波的UWB/LiDAR室内定位方法
CSTR:
作者:
作者单位:

南京工程学院

作者简介:

通讯作者:

中图分类号:

TP273

基金项目:

国家自然科学基金面上项目(61873120);江苏省重点研发计划课题(BE2021016-5);江苏省自然科学基金面上项目(BK20201469);江苏省研究生实践创新计划项目(SJCX22_1056)


UWB/LiDAR Indoor Positioning Method Based on Improved Beetle Antennae Search Algorithm Optimized Particle Filter
Author:
Affiliation:

Nanjing Institute of Technology

Fund Project:

This work was partially supported by National Natural Science Foundation of China under Grant 61873120, Key R&D Plan of Jiangsu Province under Grant BE2021016-5, National Natural Science Foundation of Jiangsu Province under Grant BK20201469, Postgraduate Research & Practice In-novation Program of Jiangsu Province under Grant SJCX22_1056

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对超宽带(UWB)测距存在非视距(NLOS)误差以及LiDAR存在累计误差影响定位精确度的问题,本文提出了一种基于改进天牛须搜索算法(BAS)优化粒子滤波的UWB/LiDAR室内定位方法。该方法综合UWB抗干扰能力强,时间分辨率高和LiDAR的高精度和高效率的优点,使用LiDAR量测信息解算组合定位系统与UWB基站的距离,剔除UWB量测值中的NLOS误差。改进天牛须搜索算法的引入有效延缓了粒子退化现象,减少算法所需粒子数,提升算法运行速度和实时性。最后构建UWB/LiDAR的组合函数,使用图优化的方法优化全局位姿。实验结果表明,同等效果下,经改进天牛须搜索算法优化后所需的粒子数仅为原粒子滤波算法的20%,同时相较于单一的UWB、LiDAR定位,本文方法的定位精度分别提升了58.25%和76.35%,效果良好。

    Abstract:

    This paper proposes a UWB/LiDAR indoor positioning method based on improved Beetle Antennae Search Algorithm(BAS) optimized particle filter to address the issues of non-line-of-sight (NLOS) errors in ultra-wideband (UWB) range and cumulative errors in LiDAR impacting positioning accuracy. In order to eliminate NLOS error in the UWB measurement value, the method combines the benefits of high interference immunity and high temporal resolution of UWB with the high accuracy and efficiency of LDIAR. The distance between the combined positioning system and the UWB base station is solved using the LiDAR measurement information. The addition of improved BAS significantly reduces the number of particles needed by the algorithm, speeds up algorithm execution in real time, and successfully slows down the particle degradation issue. The global bit posture is then obtained by the graph optimization-based combination function of UWB/LiDAR. The experimental results show that the improved BAS optimization algorithm only requires 20% particles of the original particle filter algorithm for the same effect, and that when compared to single UWB and LiDAR localization, the localization accuracy of this proposed method is improved by 58.25% and 76.35%, respectively, with good results.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-13
  • 最后修改日期:2024-07-20
  • 录用日期:2023-10-10
  • 在线发布日期: 2023-10-24
  • 出版日期:
文章二维码