自适应空间强度约束和KL信息的模糊C均值 彩色噪声图像分割
DOI:
CSTR:
作者:
作者单位:

贵州民族大学

作者简介:

通讯作者:

中图分类号:

TP273;TP391.4

基金项目:

国家自然科学基金项目(No.62062024);贵州省省级科技计划项目(No.黔科合基础-ZK[2021]一般342);贵州省教育厅自然科学研究项目(No.黔教技[2022]015),


Fuzzy C-Means with Adaptive Spatial Intensity Constraints and KL Information for Color Noise Image Segmentation
Author:
Affiliation:

Guizhou Minzu University

Fund Project:

National Natural Science Foundation of China (under Grant 62062024), in part by the Natural Science Foundation of Guizhou Province (under Grant ZK [2021] common 342), and in part by the Natural Science Research Project of Department of Education of Guizhou Province (Grant no. QJJ2022015).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了增强传统模糊C均值聚类算法的抗噪性能,保持任意像素与相邻像素之间的隶属度相似性,提出一种自适应空间强度约束和KL信息的模糊C均值彩色噪声图像分割算法。首先,通过快速双边滤波器获取局部空间强度信息,用于平滑噪声像素;其次,将局部加权平均隶属度作为先验概率,并通过KL信息将其嵌入目标函数中,从而优化隶属度的划分矩阵;最后,计算原始图像与双边滤波图像之间的绝对强度差,用指数形式的绝对强度差作为双边滤波图像的自适应权值,并将其倒数作为原始图像的自适应权值。当混合噪声密度为30%时,所提算法在彩色合成图像上的划分系数和划分熵分别为99.66%和0.58%,在彩色真实图像上的划分系数和划分熵分别为98.77%和2.03%。实验结果表明,与其他相关算法相比,所提算法的抗噪性能更强、分割精度更高、稳定性更好。

    Abstract:

    In order to enhance the anti-noise performance of traditional fuzzy C-means clustering algorithm and preserve the membership similarity between arbitrary pixels and neighboring pixels, a fuzzy C-means color noise image segmentation algorithm with adaptive spatial intensity constraints and KL information is proposed. Firstly, the local spatial intensity information is obtained by fast bilateral filter, which is used to smooth the noisy pixels. Secondly, local weighted average membership is taken as the prior probability, and it is embedded into the objective function by KL information, so as to optimize the membership partition matrix. Finally, the absolute intensity difference between original image and the bilateral filtered image is calculated, and the absolute intensity difference in exponential form is adopted as adaptive weight of the bilateral filtered image, and then its inverse is applied as adaptive weight of original image. When the mixed noise density is 30%, the partition coefficient and partition entropy of the proposed algorithm are 99.66% and 0.58% on the noise synthetic image, and then 98.77% and 2.03% on real noise image, respectively. Experimental results show that the proposed algorithm has stronger anti-noise performance, higher segmentation accuracy and better stability in comparison with other related algorithms.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-07-24
  • 最后修改日期:2024-03-18
  • 录用日期:2023-10-25
  • 在线发布日期: 2023-11-12
  • 出版日期:
文章二维码