基于全局上下文交互融合的伪装目标检测网络
DOI:
CSTR:
作者:
作者单位:

安徽理工大学

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金(62102003),安徽省自然科学基金(2108085QF258),安徽省博士后基金(2022B623)


Camouflaged Object Detection Network Based on Global Context Interaction Fusion
Author:
Affiliation:

Anhui University of Technology

Fund Project:

National Natural Science Foundation of China (62102003), Natural Science Foundation of Anhui Province of China (2108085QF258), Anhui Postdoctoral Science Foundation (2022B623)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在伪装目标检测中,针对以往的特征融合研究大多采用多级特征集成,而忽略了不同特征间的差异。文中提出一种基于全局上下文交互融合网络用于伪装目标检测。利用改进的金字塔视觉转换器 (PVTv2)模型作为骨干网络,在多个尺度上提取全局上下文信息。首先,设计边界增强模块来关注伪装目标的结构细节,并获取物体的边缘特征。其次,借鉴动物捕食机制提出了特征融合解码模块,该模块提供位置信息用于潜在目标定位以产生粗略定位图。最后,通过所搭建的全局上下文聚合模块进行多层次信息的充分交互,减少特征聚合过程中的信息丢失。采用4个公开数据集、4种评价指标进行实验,实验结果表明文中网络性能优于其它17个具有代表性的模型。

    Abstract:

    In camouflaged object detection, most previous studies on feature fusion have predominantly used multi-level feature integration while neglecting the differences between various features. In this paper, a global context interaction fusion Network is proposed for camouflaged object detection, which employs an improved Pyramid Vision Transformer (PVTv2) model as the backbone network to extract global context information at multiple scales. First, a Boundary Enhancement Module is designed to focus on the structural details of camouflaged objects and acquire the edge features of objects. Second, inspired by the hunting mechanisms of animals, a Feature Fusion Decoder Module is proposed, which provides position information for potential object localization to produce a rough localization map. Finally, a Global Context Aggregation Module is constructed to fully interact with multi-level information and reduce information loss during feature aggregation. Extensive experiments on four publicly available datasets demonstrate that our method surpasses that of 17 other state-of-the-art models under four evaluation metrics.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-03
  • 最后修改日期:2024-03-18
  • 录用日期:2023-11-03
  • 在线发布日期: 2023-11-12
  • 出版日期:
文章二维码