RMFS补货货品存储分配问题研究
CSTR:
作者:
作者单位:

武汉科技大学

作者简介:

通讯作者:

中图分类号:

O221; F253

基金项目:

湖北省教育厅哲学社会科学研究项目(22D022); 武汉市知识创新专项基础研究项目(2022010801010301); 武汉市知识创新专项曙光计划项目(2022010801020317); 中国物流学会、中国物流与采购联合会面上研究课题(2022CSLKT3-130)


Research on RMFS Replenishment Items Storage Assignment Problem
Author:
Affiliation:

Wuhan University of Science and Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高移动机器人履行系统(robotic mobile fulfillment systems,RMFS)的订单拣选效率,研究了RMFS补货货品存储分配问题。以最大化所有货架上货品之间的关联度总和为目标构建了混合整数规划模型,设计了求解问题的大规模邻域搜索算法,采用贪婪算法构造初始可行解,结合问题特征定义了破坏算子和修复算子,并利用数值实验验证了大规模邻域搜索算法的有效性。结果表明,在贪婪算法生成初始解的基础上,大规模邻域搜索算法能有效提高解的质量,在中等和大规模算例上平均提高了37.4%和21.5%。并且相比变邻域搜索算法具有更好的优化效果,在中等和大规模算例上平均提高了8.9%和10.3%。此外,利用参数分析实验研究了货架数量、货位数量以及货品分散程度对目标函数值的影响。

    Abstract:

    To improve the order picking efficiency of the robotic mobile fulfillment systems (RMFS), this paper investigates the RMFS replenishment items storage assignment problem. A mixed integer programming model is developed with the objective of maximizing the correlation degree among items in all pods. To solve the problem, a large neighborhood search algorithm is designed for the solution. The initial feasible solution is generated by a greedy algorithm. Combining the characteristics of the problem, the destroy operator and repair operator are proposed to improve the solution. Numerical experiments show that the large neighborhood search algorithm has good performance. In medium- and large-scale instances, the large neighborhood search algorithm can effectively improve the solution quality by 37.4% and 21.5% respectively based on the initial solution generated by the greedy algorithm, and it outperforms the variable neighborhood search algorithm with an average improvement of 8.9% and 10.3%. Moreover, the sensitivity analysis experiments analyze the effects of the number of pods, the number of slots, and the scattered degree of items on the objective value.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-12
  • 最后修改日期:2024-09-03
  • 录用日期:2024-05-09
  • 在线发布日期: 2024-06-05
  • 出版日期:
文章二维码